首页> 外文期刊>Journal of visual communication & image representation >A sound-based video clipping framework toward sports scenes
【24h】

A sound-based video clipping framework toward sports scenes

机译:基于声音的运动场景视频剪辑框架

获取原文
获取原文并翻译 | 示例

摘要

Video clipping system is very important in many intelligent applications. In order to shorten the time of video and extract the framework of the video, many methods have been proposed. But these methods just considered videos without taking sound into account. As we know, sound is also an important information for image processing. For example, many sport match videos include rich sound of audience and commentator such as NBA. In addition, human pay more attention to some video clips of interest (VCOI) such as scoring time instead of pause. So in this paper, we propose a sound-based video clipping framework toward specific sports scenes. First, we convert sound of sport videos to sonogram. For some aesthetically-pleasing images (APIM) such as slam dunk or jump shot, a set of object patches are selected using BING feature. Then, these object patches are ordered by our active object patches ranking algorithm. After that, ordered object patches and sonogram are fed into CNN respectively to obtain patch-level deep feature. In order to obtain image-level deep representation, deep feature extracted from ordered object patches are aggregated statistically into a deep representation. Finally, probabilistic model is used to select VCOI and APIM. Experiments on some NBA basketball matches have shown the effectiveness of our video clipping framework.
机译:视频剪辑系统在许多智能应用中非常重要。为了缩短视频时间并提取视频框架,已经提出了许多方法。但是这些方法只是考虑了视频而没有考虑声音。众所周知,声音也是图像处理的重要信息。例如,许多体育比赛视频都包含观众和评论员(例如NBA)的丰富声音。此外,人类会更加关注一些感兴趣的视频片段(VCOI),例如计分时间而不是暂停。因此,在本文中,我们针对特定运动场景提出了基于声音的视频剪辑框架。首先,我们将体育视频的声音转换为超声图。对于某些美观的图像(APIM),例如灌篮或跳投,可使用BING功能选择一组对象补丁。然后,这些对象补丁通过我们的活动对象补丁排名算法进行排序。之后,将有序对象补丁和超声图分别馈入CNN,以获得补丁级别的深度特征。为了获得图像级的深度表示,将从有序对象补丁中提取的深度特征统计地汇总为深度表示。最后,使用概率模型选择VCOI和APIM。在一些NBA篮球比赛中进行的实验证明了我们的视频剪辑框架的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号