首页> 外文期刊>Journal of visual communication & image representation >Asymmetric filtering-based dense convolutional neural network for person re-identification combined with Joint Bayesian and re-ranking
【24h】

Asymmetric filtering-based dense convolutional neural network for person re-identification combined with Joint Bayesian and re-ranking

机译:基于联合贝叶斯和重新排序的基于不对称过滤的密集卷积神经网络用于人员重新识别

获取原文
获取原文并翻译 | 示例

摘要

Person re-identification aims at matching individuals across multiple camera views under surveillance systems. The major challenges lie in the lack of spatial and temporal cues, which makes it difficult to cope with large variations of lighting conditions, viewing angles, body poses and occlusions. How to extract multimodal features including facial features, physical features, behavioral features, color features, etc is still a fundamental problem in person re-identification. In this paper, we propose a novel Convolutional Neural Network, called Asymmetric Filtering-based Dense Convolutional Neural Network (AF D-CNN) to learn powerful features, which can extract different levels' features and take advantage of identity information. Moreover, instead of using typical metric learning methods, we obtain the ranking lists by merging Joint Bayesian and re-ranking techniques which do not need dimensionality reduction. Finally, extensive experiments show that our proposed architecture performs well on four popular benchmark datasets (CUHK01, CUHK03, Market-1501, DukeMTMC-reID). (C) 2018 Elsevier Inc. All rights reserved.
机译:人员重新识别旨在在监视系统下跨多个摄像机视图匹配人员。主要挑战在于缺乏空间和时间线索,这使得难以应付照明条件,视角,身体姿势和遮挡的巨大变化。如何提取包括面部特征,身体特征,行为特征,颜色特征等在内的多峰特征仍然是人重新识别的基本问题。在本文中,我们提出了一种新颖的卷积神经网络,称为基于不对称滤波的密集卷积神经网络(AF D-CNN),以学习强大的特征,该特征可以提取不同级别的特征并利用身份信息。此外,我们不使用典型的度量学习方法,而是通过合并联合贝叶斯算法和不需要降维的重新排名技术来获得排名列表。最后,大量实验表明,我们提出的体系结构在四个流行的基准数据集(CUHK01,CUHK03,Market-1501,DukeMTMC-reID)上表现良好。 (C)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号