首页> 外文期刊>Journal of turbomachinery >Free-Stream Turbulence-Induced Boundary-Layer Transition in Low-Pressure Turbines
【24h】

Free-Stream Turbulence-Induced Boundary-Layer Transition in Low-Pressure Turbines

机译:低压涡轮机中的自由流湍流诱导的边界层过渡

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The aerodynamic efficiency of turbomachinery blades is profoundly affected by the occurrence of laminar-turbulent transition in the boundary layer since skin friction and losses rise for the turbulent state. Depending on the free-stream turbulence level, we can identify different paths toward a turbulent state. The present study uses direct numerical simulation as the primary tool to investigate the flow behavior of the low-pressure turbine blade. In the simulations, the flow past only one blade is computed, with periodic boundary conditions in the cross-flow directions to account for the cascade. Isotropic homogeneous free-stream turbulence is prescribed at the inlet. The free-stream turbulence is prescribed as a superposition of Fourier modes with a random phase shift. Two levels of the free-stream turbulence intensity were simulated (Tu = 0.19% and 5.2%,), with the integral length scale being 0.167c, at the leading edge. We observed that in the case of low free-stream turbulence on the suction side, the Kelvin-Helmholz instability dominated the transition process and full-span vortices were shed from the separation bubble. Transition on the suction side proceeded more rapidly in the high-turbulence case, where streaks broke down into turbulent spots and caused bypass transition. On the pressure side, we have identified the appearance of longitudinal vortical structures, where increasing the turbulence level gives rise to more longitudinal structures. We note that these vortical structures are not produced by Gortler instability.
机译:由于皮肤摩擦和湍流状态升高,涡轮机械叶片的空气动力学效率深受边界层中的层压湍流过渡的影响。根据自由流湍流级别,我们可以识别朝向动荡状态的不同路径。本研究采用直接数值模拟作为研究低压涡轮叶片的流动性能。在仿真中,计算仅流动的流动,在交叉流动方向上具有周期性边界条件,以解释级联。在入口处规定各向同性均匀的自由流湍流。自由流湍流作为随机相移的傅里叶模式的叠加。模拟了两种水平的自由流湍流强度(Tu = 0.19%和5.2%,),整体长度尺度为0.167℃,在前缘。我们观察到,在吸入侧的低自由流湍流的情况下,Kelvin-Helmholz不稳定性主导过渡过程,并且从分离气泡脱落。在高湍流壳体中,在吸入侧的过渡更快地进行,其中条纹突破湍流斑点并导致旁路过渡。在压力侧,我们已经确定了纵向涡旋结构的外观,其中湍流水平的增加产生了更多的纵向结构。我们注意到这些涡流结构不是通过戈尔勒索不稳定性产生的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号