首页> 外文期刊>International Journal of Heat and Fluid Flow >Large eddy simulations in low-pressure turbines: Effect of wakes at elevated free-stream turbulence
【24h】

Large eddy simulations in low-pressure turbines: Effect of wakes at elevated free-stream turbulence

机译:低压涡轮中的大型涡流模拟:自由流湍流增加时尾流的影响

获取原文
获取原文并翻译 | 示例
       

摘要

The transition of a separated shear layer over a flat plate, in the presence of periodic wakes and elevated free-stream turbulence (FST), is numerically investigated using Large Eddy Simulation (LES). The upper wall of the test section is inviscid and specifically contoured to impose a streamwise pressure distribution over the flat plate to simulate the suction surface of a low-pressure turbine (LPT) blade. Two different distributions representative of a 'high-lift' and an 'ultra high-lift' turbine blade are examined. Results obtained from the current LES compare favourably with the extensive experimental data previously obtained for these configurations. The LES results are then used to further investigate the flow physics involved in the transition process. In line with experimental experience, the benefit of wakes and FST obtained by suppressing the separation bubble, is more pronounced in 'ultra high-lift' design when compared to the 'high-lift' design. Stronger 'Klebanoff streaks' are formed in the presence of wakes when compared to the streaks due to FST alone. These streaks promoted much early transition. The weak Klebanoff streaks due to FST continued to trigger transition in between the wake passing cycles. The experimental inference regarding the origin of Klebanoff streaks at the leading edge has been confirmed by the current simulations. While the wake converts at local free-stream velocity, its impression in the boundary layer in the form of streaks convects much slowly. The 'part-span' Kelvin-Helmholtz structures, which were observed in the experiments when the wake passes over the separation bubble, are also captured. The non-phase averaged space-time plots manifest that reattachment is a localized process across the span unlike the impression of global reattachment portrayed by phase averaging.
机译:使用大涡模拟(LES)对存在周期性尾流和高自由流湍流(FST)的情况下平板上分离的剪切层的过渡过程进行了数值研究。测试部分的上壁是不粘的,并且具有特定的轮廓,以在平板上施加沿流的压力分布,以模拟低压涡轮(LPT)叶片的吸力表面。检查了代表“高升程”和“超高升程”涡轮叶片的两种不同分布。从当前的LES获得的结果与先前针对这些配置获得的大量实验数据相比具有优势。 LES结果然后用于进一步研究过渡过程中涉及的流动物理学。根据实验经验,与“高升程”设计相比,“超高升程”设计中通过抑制分离气泡获得的尾流和FST的优势更为明显。与仅由FST产生的条纹相比,在有尾流的情况下会形成更强的“ Klebanoff条纹”。这些条纹促进了许多早期过渡。由于FST而导致的弱Klebanoff条纹继续触发了唤醒循环之间的过渡。当前模拟已证实了有关前沿Klebanoff条纹起源的实验推断。当尾流以局部自由流速度转换时,其以条纹形式在边界层中的印象对流的速度非常慢。在尾流经过分离气泡时在实验中观察到的“部分跨度” Kelvin-Helmholtz结构也被捕获。非相位平均时空图表明,重新附着是跨度的局部过程,这与相位平均所描绘的全局重新附着的印象不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号