...
首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Role of interface-affected dislocation motion on the strength of Mg/Nb nanolayered composites inferred by dual-mode confined layer slip crystal plasticity
【24h】

Role of interface-affected dislocation motion on the strength of Mg/Nb nanolayered composites inferred by dual-mode confined layer slip crystal plasticity

机译:接口影响的位错运动对双模监控层滑动晶体塑性的Mg / Nb纳米复合材料强度的作用

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, we present a nanostructure-sensitive crystal plasticity model for the deformation response of nanolaminate composites. The model is applied to investigate the strength of Mg/Nb nanocomposites, wherein the Mg phase has either a hexagonal close-packed (HCP) or a body-centered cubic (BCC) crystal structure. To account explicitly for the effects of layer thickness and biphase interface on crystallographic slip, the model features a hardening law, called dual-mode confined layer slip (CLS). The model is applied to a suite of stress-strain measurements made on Mg/Nb nanocomposites, varying layer thickness, texture, and interface structure. Experiments show that the BCC/BCC Mg/Nb nanocomposites achieve substantially higher strength than the HCP/BCC nanocomposites. Apart from the finer layer thicknesses, the model indicates that the pseudomorphic BCC Mg phase contributes to strength by increasing the slip strengths of the (111) slip modes compared to the (a) slip modes in HCP Mg. It also suggests that the coherent interface poses less resistance to dislocation motion than the incoherent interface. It is, therefore, found that the BCC/BCC composite strength benefited from both the confinement on dislocation motion imposed by the reduced layer thickness and higher inherent strength of its BCC phase, but that it would be even higher if the interface was not a sharp coherent interface.
机译:在这项工作中,我们提出了一种纳米结构敏感晶体塑性塑性模型,用于纳米烷基化复合材料的变形响应。该模型用于研究Mg / Nb纳米复合材料的强度,其中Mg相具有六边形封闭填充(HCP)或身体中心的立方(BCC)晶体结构。要明确地考虑层厚度和双相界面对晶体滑动时的影响,该模型具有硬化定律,称为双模限制层滑移(CLS)。该模型应用于在Mg / Nb纳米复合材料,不同层厚度,纹理和界面结构上进行的应力 - 应变测量套件。实验表明,BCC / BCC Mg / Nb纳米复合材料比HCP / BCC纳米复合材料的强度达到基本上更高的强度。除了更精细的层厚度之外,该模型表明,与HCP MG中的(A)滑动模式相比,通过增加(111)滑移模式的滑移强度,PSeudomorphic Mg Mg阶段有助于强度。它还表明,相干界面的抵抗力较低,而不是非联络界面。因此,它发现BCC / BCC复合强度受益于由减小层厚度施加的位错运动的限制和其BCC阶段的更高固有强度,但如果界面不是尖锐,它会更高相干界面。

著录项

  • 来源
    《Journal of the Mechanics and Physics of Solids》 |2021年第7期|104421.1-104421.16|共16页
  • 作者单位

    Department of Mechanical Engineering University of California Santa Barbara CA 93106-5070 United States;

    Department of Mechanical Engineering University of New Hampshire Durham NH 03824 United States;

    Department of Chemical and Materials Engineering University of Nevada Reno NV 89557 United States EMPA Swiss Federal Laboratory for Materials Science and Technology Feuerwerkerstrasse 39 Thun 3602 Switzerland;

    Department of Chemical and Materials Engineering University of Nevada Reno NV 89557 United States Department of Materials Science and Engineering Iowa State University Ames IA 50011 United States;

    Department of Mechanical Engineering University of California Santa Barbara CA 93106-5070 United States Materials Department University of California Santa Barbara CA 93016-5050 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    A. Dislocation; B. Layered material; B. Crystal Plasticity; C. Finite element Interface;

    机译:A.错位;B.分层材料;B.晶体可塑性;C.有限元接口;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号