首页> 美国卫生研究院文献>Scientific Reports >Nanograin size effects on the strength of biphase nanolayered composites
【2h】

Nanograin size effects on the strength of biphase nanolayered composites

机译:纳米粒度对双相纳米复合材料强度的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this work, we employ atomic-scale simulations to uncover the interface-driven deformation mechanisms in biphase nanolayered composites. Two internal boundaries persist in these materials, the interlayer crystalline boundaries and intralayer biphase interfaces, and both have nanoscale dimensions. These internal surfaces are known to control the activation and motion of dislocations, and despite the fact that most of these materials bear both types of interfaces. From our calculations, we find that the first defect event, signifying yield, is controlled by the intralayer spacing (grain size, d), and not the intralayer biphase spacing (layer thickness, h). The interplay of two internal sizes leads to a very broad transition region from grain boundary sliding dominated flow, where the material is weak and insensitive to changes in h, to grain boundary dislocation emission and glide dominated flow, where the material is strong and sensitive to changes in h. Such a rich set of states and size effects are not seen in idealized materials with one of these internal surfaces removed. These findings provide some insight into how changes in h and d resulting from different synthesis processes can affect the strength of nanolayered materials.
机译:在这项工作中,我们采用原子尺度的模拟来揭示双相纳米层复合材料中界面驱动的变形机制。这些材料存在两个内部边界,即层间晶体边界和层内双相界面,并且都具有纳米级尺寸。尽管事实上大多数这些材料都具有两种类型的界面,但已知这些内表面可控制位错的激活和运动。从我们的计算中,我们发现第一个缺陷事件,即合格率,是由层内间距(晶粒尺寸,d)控制的,而不是由层内双相间距(层厚度,h)控制的。两种内部尺寸的相互作用导致了一个非常宽的过渡区域,从晶界滑动为主的流动(材料较弱且对h的变化不敏感)到晶界错位发射和滑行为主的流动(材料在其中对强度高且敏感)过渡。 h的变化在去除这些内表面之一的理想化材料中,看不到如此丰富的状态和尺寸效应。这些发现提供了对不同合成工艺导致的h和d变化如何影响纳米层材料强度的一些见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号