首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Finite element modeling of dynamic frictional rupture with rate and state friction
【24h】

Finite element modeling of dynamic frictional rupture with rate and state friction

机译:具有速率和状态摩擦的动态摩擦破裂的有限元模型

获取原文
获取原文并翻译 | 示例

摘要

Numerous laboratory experiments have demonstrated the dependence of the friction coefficient on the interfacial slip rate and the contact history, a behavior generically called rate and state friction. Although numerical models have been widely used for analyzing rate and state friction, in general they consider infinite elastic domains surrounding the sliding interface and rely on boundary integral formulations. Much less work has been dedicated to modeling finite size systems to account for interactions with boundaries. This paper investigates rate and state frictional interfaces in the context of finite size systems with the finite element method in explicit dynamics. It is shown that due to the highly non-linear nature of rate and state friction and its sensitivity to numerical noise, the time integration step to achieve an accurate steady state solution is orders of magnitude smaller compared to the stable time step required in boundary integral formulations. We provide evidence that the noise, which is source of instability in the finite element solution, originates from internal discretization nodes. We then investigate the long term behavior of the sliding interface for two different friction laws: a velocity weakening law, for which the friction monotonously decreases with increasing sliding velocity, and a velocity weakening-strengthening law, for which the friction coefficient first decreases but then increases above a critical velocity. We show that for both friction laws at finite times, that is before wave reflections from the boundaries come back to the sliding interface, a temporary steady state sliding is reached, with a well-defined stress drop at the interface. This stress drop gives rise to a stress concentration and leads to an analogy between friction and fracture. However, at longer times, that is after multiple wave reflections, the stress drop is essentially zero, resulting in losing the analogy with fracture mechanics. Finally, the simulations with applied constant traction boundary conditions reveal that velocity weakening is unstable at long time scales, as it results in an acceleration of the sliding blocks. On the other hand, velocity weakening-strengthening reaches a steady state sliding configuration.
机译:许多实验室实验已经证明了摩擦系数对界面滑动速率和接触历史的依赖性,一般称为速率和状态摩擦的行为。尽管数值模型已被广泛用于分析速率和状态摩擦,但是一般来说,它们考虑围绕滑动界面的无限弹性域并依赖于边界积分制剂。更少的工作致力于建模有限尺寸系统以考虑与边界的交互。本文在有限元方法中,在显式动态中调查有限元方法的范围内的速率和状态摩擦界面。结果表明,由于速率和状态摩擦的高度线性性质及其对数值噪声的敏感性,实现精确稳态解决方案的时间集成步骤是与边界积分所需的稳定时间步长相比较小的数量级配方。我们提供了证据表明,噪声是有限元解决方案中不稳定性的源,来自内部离散节点。然后,我们研究了两种不同摩擦法的滑动界面的长期行为:速度弱化法,其中摩擦随着滑动速度的增加而单调,以及速度弱化 - 强化法,摩擦系数首先降低但随后提高了临界速度。我们表明,对于有限时间的摩擦定律,即在从边界的波反射回到滑动界面之前,达到临时稳态滑动,在接口处具有明确的应力下降。这种应力下降引起应力集中并导致摩擦和骨折之间的类比。然而,在更长的时间内,即在多次波反射之后,应力下降基本上为零,导致与骨折力学进行类比。最后,利用施加的恒定牵引边界条件揭示了速度弱,长时间尺度不稳定,因为它导致滑块的加速度。另一方面,速度弱化强化达到稳态滑动配置。

著录项

  • 来源
    《Journal of the Mechanics and Physics of Solids》 |2020年第8期|103967.1-103967.22|共22页
  • 作者单位

    Civil Engineering Institute Materials Science and Engineering Institute Ecole Polytechnique Federate de Lausanne (EPFL) Lausanne Switzerland;

    Civil Engineering Institute Materials Science and Engineering Institute Ecole Polytechnique Federate de Lausanne (EPFL) Lausanne Switzerland The Njord Centre Department of Physics Department of Geosciences University of Oslo 0316 Oslo Norway;

    Univ Lyon INSA-Lyon GEOMAS 69621 Villeurbanne France;

    Civil Engineering Institute Materials Science and Engineering Institute Ecole Polytechnique Federate de Lausanne (EPFL) Lausanne Switzerland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Rate and state friction law; Finite element; Explicit dynamic; Frictional rupture propagation;

    机译:利率和国家摩擦法;有限元;明确动态;摩擦破裂繁殖;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号