首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Size effects and idealized dislocation microstructure at small scales: Predictions of a Phenomenological model of Mesoscopic Field Dislocation Mechanics: Part I
【24h】

Size effects and idealized dislocation microstructure at small scales: Predictions of a Phenomenological model of Mesoscopic Field Dislocation Mechanics: Part I

机译:小尺度的尺寸效应和理想的位错微观结构:介观场位错力学现象学模型的预测:第一部分

获取原文
获取原文并翻译 | 示例
           

摘要

A Phenomenological Mesoscopic Field Dislocation Mechanics (PMFDM) model is developed, extending continuum plasticity theory for studying initial-boundary value problems of small-scale plasticity. PMFDM results from an elementary space-time averaging of the equations of Field Dislocation Mechanics (FDM), followed by a closure assumption from any strain-gradient plasticity model that attempts to account for effects of geometrically necessary dislocations (GNDs) only in work hardening. The specific lower-order gradient plasticity model chosen to substantiate this work requires one additional material parameter compared to its conventional continuum plasticity counterpart. The further addition of dislocation mechanics requires no additional material parameters. The model (a) retains the constitutive dependence of the free-energy only on elastic strain as in conventional continuum plasticity with no explicit dependence on dislocation density, (b) does not require higher-order stresses, and (c) does not require a constitutive specification of a 'back-stress' in the expression for average dislocation velocity/plastic strain rate. However, long-range stress effects of average dislocation distributions are predicted by the model in a mechanistically rigorous sense. Plausible boundary conditions (with obvious implication for corresponding interface conditions) are discussed in some detail from a physical point of view. Energetic and dissipative aspects of the model are also discussed. The developed framework is a continuous-time model of averaged dislocation plasticity, without having to rely on the notion of incremental work functions, their convexity properties, or their minimization. The tangent modulus relating stress rate and total strain rate in the model is the positive-definite tensor of linear elasticity, and this is not an impediment to the development of idealized microstructure in the theory and computations, even when such a convexity property is preserved in a computational scheme. A model of finite deformation, mesoscopic single crystal plasticity is also presented, motivated by the above considerations.
机译:建立了一种现象学的介观场错力学模型,扩展了连续性可塑性理论,用于研究小规模可塑性的初边值问题。 PMFDM是由场错力学(FDM)方程的基本时空平均得出的,然后是来自任何应变梯度可塑性模型的闭合假设,该模型仅考虑加工硬化中几何必要位错(GND)的影响。与常规连续可塑性对应物相比,为证实这项工作而选择的特定低阶梯度可塑性模型需要一个额外的材料参数。进一步增加位错力学不需要额外的材料参数。模型(a)仅保留自由能对弹性应变的本构依赖关系,而与常规连续塑性一样,而对位错密度没有明显依赖;(b)不需要高阶应力,并且(c)不需要平均位错速度/塑性应变速率表达式中“背应力”的组成性规范。但是,平均位错分布的远程应力效应是由模型在机械上严格意义上预测的。从物理的角度对可能的边界条件(对相应的界面条件有明显的暗示)进行了详细的讨论。还讨论了模型的能量和耗散方面。所开发的框架是平均位错可塑性的连续时间模型,而不必依赖于增量功函数,其凸性或最小化的概念。模型中与应力率和总应变率相关的切线模量是线性弹性的正定张量,即使在结构中保留了这种凸性,这也不妨碍理论和计算中理想化微观结构的发展。计算方案。出于上述考虑,还提出了有限变形,介观单晶可塑性的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号