首页> 外文期刊>Journal of the Mechanics and Physics of Solids >A deformation theory of strain gradient crystal plasticity that accounts for geometrically necessary dislocations
【24h】

A deformation theory of strain gradient crystal plasticity that accounts for geometrically necessary dislocations

机译:应变梯度晶体可塑性的变形理论解释了几何上必要的位错

获取原文
获取原文并翻译 | 示例
       

摘要

We propose a deformation theory of strain gradient crystal plasticity that accounts for the density of geometrically necessary dislocations by including, as an independent kinematic variable, Nye's dislocation density tensor [1953. Acta Metallurgica 1, 153-162]. This is accomplished in the same fashion as proposed by Gurtin and co-workers (see, for instance, Gurtin and Needleman [2005. J. Mech. Phys. Solids 53, 1-31]) in the context of a flow theory of crystal plasticity, by introducing the so-called defect energy. Moreover, in order to better describe the strengthening accompanied by diminishing size, we propose that the classical part of the plastic potential may be dependent on both the plastic slip vector and its gradient; for single crystals, this also makes it easier to deal with the "higher-order" boundary conditions. We develop both the kinematic formulation and its static dual and apply the theory to the simple shear of a constrained strip (example already exploited in Shu et al. [2001. J. Mech. Phys. Solids 49, 1361-1395], Bittencourt et al. [2003. J. Mech. Phys. Solids 51, 281-310], Niordson and Hutchinson [2003. Euro J. Mech. Phys. Solids 22, 771-778], Evers et al. [2004. J. Mech. Phys. Solids 52, 2379-2401], and Anand et al. [2005. J. Mech. Phys. Solids 53, 1789-1826]) to investigate what sort of behaviour the new model predicts. The availability of the total potential energy functional and its static dual allows us to easily solve this simple boundary value problem by resorting to the Ritz method.
机译:我们提出了一种应变梯度晶体可塑性的变形理论,该理论通过将Nye的位错密度张量[1953]作为一个独立的运动学变量来说明几何上必要的位错的密度。金属学报1,153-162]。在晶体流动理论的背景下,这可以通过与Gurtin及其同事提出的相同方式来完成(例如,参见Gurtin和Needleman [2005. J. Mech。Phys。Solids 53,1-31])。通过引入所谓的缺陷能来实现可塑性。此外,为了更好地描述伴随尺寸减小的强化,我们建议塑性势的经典部分可能既取决于塑性滑移矢量又取决于其坡度。对于单晶,这也使得处理“高阶”边界条件变得更加容易。我们开发了运动学公式及其静态对偶,并将该理论应用于约束带的简单剪切(Shu等人[2001. J. Mech。Phys。Solids 49,1361-1395],Bittencourt等人已利用的示例) Niordson和Hutchinson等人[2003. J. Mech。Phys。Solids 51,281-310],Niordson和Hutchinson [2003. Euro J. Mech。Phys。Solids 22,771-778],Evers等人[2004. J. Mech Phys.Solids 52,2379-2401]和Anand等人[2005. J. Mech。Phys。Solids 53,1789-1826])来研究新模型预测的行为类型。总势能函数及其静态对偶的可用性使我们可以借助Ritz方法轻松解决此简单的边值问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号