首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Dislocation arrangement in small crystal volumes determines power-law size dependence of yield strength
【24h】

Dislocation arrangement in small crystal volumes determines power-law size dependence of yield strength

机译:小晶体体积中的位错排列决定了屈服强度的幂律尺寸依赖性

获取原文
获取原文并翻译 | 示例
           

摘要

It is by now well-known that micron-sized metallic crystals exhibit a smaller-being-stronger size effect: the yield strength σ varies with specimen size D approximately as a power-law σ~D~(-m), and the exponent m has been found to vary within a range of ~0.3-1.0 for different metals. However, little is known about why such a power-law comes into play, and what determines the actual value of the exponent m involved. This work shows that if the yield strength is determined by the Taylor interaction mechanism within the initial dislocation network, then for the size dependence of strength to be of the power-law relation observed, it is necessary for the mesh lengths L of the dislocation network to be power-law distributed, i.e. p(L)~L~(-q). In such a case, the exponent m of the size effect is predicted to be inversely proportional to the sum of q the exponent of the mesh-length distribution and n the exponent of the dislocation velocity vs. stress law. To verify these predictions, compression experiments on aluminum micro-pillars with different pre-strains from 0% to 15% were carried out. The different pre-strains led to different initial dislocation networks, as well as different exponent m in the size dependence of strength. Box-counting analyses of transmission electron micrographs of the initial dislocation networks showed that the 2-D projected dislocation patterns were approximate fractals. On increasing pre-strain, the exponent m for the size dependence of strength was found to decrease while the fractal dimension of the initial dislocation patterns increased, thus verifying the inverse relationship between the two quantities. These findings show that the commonly observed power-law scaling of strength with size is due to an approximate power-law distribution of the initial dislocation mesh lengths, which also appears to be a robust feature in deformed metals. Furthermore, for a given metal, it is the exponent q of the initial mesh-length distribution which determines the value of the exponent m in the size dependence of strength.
机译:众所周知,微米级的金属晶体具有较小的尺寸效应:屈服强度σ随试样尺寸D的变化近似为幂律σ〜D〜(-m),并且指数已经发现对于不同的金属,m在〜0.3-1.0的范围内变化。但是,对于为什么这样的幂律起作用,以及由什么决定所涉及的指数m的实际值,人们知之甚少。这项工作表明,如果屈服强度是由初始位错网络内的泰勒相互作用机制决定的,那么,要使强度的大小依赖于所观察到的幂律关系,就必须使位错网络的网格长度L为幂律分布,即p(L)〜L〜(-q)。在这种情况下,尺寸效应的指数m预计与q的网格长度分布指数和n的位错速度与应力定律的指数之和成反比。为了验证这些预测,对预应变从0%到15%的铝微柱进行了压缩实验。不同的预应变导致不同的初始位错网络,以及强度大小依存性的指数m。初始位错网络的透射电子显微照片的盒计数分析表明,二维投影位错模式为近似分形。随着预应变的增加,强度的大小依赖性指数m减小,而初始位错图案的分形维数增加,从而验证了这两个量之间的反比关系。这些发现表明,通常观察到的强度随尺寸变化的幂律定标是由于初始位错网格长度的近似幂律分布引起的,这在变形金属中似乎也很可靠。此外,对于给定的金属,初始网格长度分布的指数q决定了强度强度与指数m的值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号