首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Summation rules for a fully nonlocal energy-based quasicontinuum method
【24h】

Summation rules for a fully nonlocal energy-based quasicontinuum method

机译:完全基于非局部能量的拟连续谱方法的求和规则

获取原文
获取原文并翻译 | 示例
           

摘要

The quasicontinuum (QC) method coarse-grains crystalline atomic ensembles in order to bridge the scales from individual atoms to the micro- and mesoscales. A crucial cornerstone of all QC techniques, summation or quadrature rules efficiently approximate the thermodynamic quantities of interest. Here, we investigate summation rules for a fully nonlocal, energy-based QC method to approximate the total Hamiltonian of a crystalline atomic ensemble by a weighted sum over a small subset of all atoms in the crystal lattice. Our formulation does not conceptually differentiate between atomistic and coarsegrained regions and thus allows for seamless bridging without domain-coupling interfaces. We review traditional summation rules and discuss their strengths and weaknesses with a focus on energy approximation errors and spurious force artifacts. Moreover, we introduce summation rules which produce no residual or spurious force artifacts in centrosymmetric crystals in the large-element limit under arbitrary affine deformations in two dimensions (and marginal force artifacts in three dimensions), while allowing us to seamlessly bridge to full atomistics. Through a comprehensive suite of examples with spatially non-uniform QC discretizations in two and three dimensions, we compare the accuracy of the new scheme to various previous ones. Our results confirm that the new summation rules exhibit significantly smaller force artifacts and energy approximation errors. Our numerical benchmark examples include the calculation of elastic constants from completely random QC meshes and the inhomogeneous deformation of aggressively coarse-grained crystals containing nano-voids. In the elastic regime, we directly compare QC results to those of full atomistics to assess global and local errors in complex QC simulations. Going beyond elasticity, we illustrate the performance of the energy-based QC method with the new second-order summation rule by the help of nanoindentation examples with automatic mesh adaptation. Overall, our findings provide guidelines for the selection of summation rules for the fully nonlocal energy-based QC method.
机译:准连续光谱(QC)方法是将晶粒的原子整体集成为粗糙的晶体,以便将各个原子的尺度桥接到微尺度和中尺度。所有QC技术,求和或正交规则的关键基石都可以有效地逼近所需的热力学量。在这里,我们研究一种基于能量的完全非局部QC方法的求和规则,该求和规则是通过对晶格中所有原子的一小部分的加权总和来近似晶体原子集合体的总哈密顿量。我们的公式在概念上不区分原子区域和粗粒度区域,因此无需域耦合接口即可实现无缝桥接。我们回顾了传统的求和规则,并讨论了它们的优缺点,重点关注能量逼近误差和虚假力伪像。此外,我们引入了求和规则,在二维的任意仿射变形(和三维的边际力伪影)下,在大元素范围内的中心对称晶体中,不会产生任何残余或虚假的伪影,同时允许我们无缝地桥接到完整的原子论上。通过一整套示例,这些示例在二维和三维上具有空间不一致的QC离散化,我们将新方案的准确性与以前的各种方案进行了比较。我们的结果证实,新的求和规则显示出显着较小的力伪影和能量近似误差。我们的数值基准示例包括根据完全随机的QC网格计算弹性常数,以及包含纳米空隙的激进粗晶粒晶体的不均匀变形。在弹性状态下,我们直接将QC结果与完全原子学的结果进行比较,以评估复杂QC模拟中的整体和局部误差。超越弹性,我们借助具有自动网格自适应功能的纳米压痕示例,借助新的二阶求和规则说明了基于能量的QC方法的性能。总体而言,我们的发现为完全基于非局部能量的QC方法选择求和规则提供了指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号