首页> 外文学位 >A fully-nonlocal energy-based formulation and high-performance realization of the quasicontinuum method.
【24h】

A fully-nonlocal energy-based formulation and high-performance realization of the quasicontinuum method.

机译:基于完全非局部能量的公式化和准连续谱方法的高性能实现。

获取原文
获取原文并翻译 | 示例

摘要

The quasicontinuum (QC) method was introduced to coarse-grain crystalline atomic ensembles in order to bridge the scales from individual atoms to the micro- and mesoscales. Though many QC formulations have been proposed with varying characteristics and capabilities, a crucial cornerstone of all QC techniques is the concept of summation rules, which attempt to efficiently approximate the total Hamiltonian of a crystalline atomic ensemble by a weighted sum over a small subset of atoms. In this work we propose a novel, fully-nonlocal, energy-based formulation of the QC method with support for legacy and new summation rules through a general energy-sampling scheme. Our formulation does not conceptually differentiate between atomistic and coarse-grained regions and thus allows for seamless bridging without domain-coupling interfaces. Within this structure, we introduce a new class of summation rules which leverage the affine kinematics of this QC formulation to most accurately integrate thermodynamic quantities of interest. By comparing this new class of summation rules to commonly-employed rules through analysis of energy and spurious force errors, we find that the new rules produce no residual or spurious force artifacts in the large-element limit under arbitrary affine deformation, while allowing us to seamlessly bridge to full atomistics. We verify that the new summation rules exhibit significantly smaller force artifacts and energy approximation errors than all comparable previous summation rules through a comprehensive suite of examples with spatially non-uniform QC discretizations in two and three dimensions. Due to the unique structure of these summation rules, we also use the new formulation to study scenarios with large regions of free surface, a class of problems previously out of reach of the QC method. Lastly, we present the key components of a high-performance, distributed-memory realization of the new method, including a novel algorithm for supporting unparalleled levels of deformation. Overall, this new formulation and implementation allows us to efficiently perform simulations containing an unprecedented number of degrees of freedom with low approximation error.
机译:准连续谱(QC)方法被引入到粗晶粒晶体原子团中,以便将单个原子的标度桥接到微观和中观标度。尽管已经提出了许多具有不同特性和功能的QC公式,但所有QC技术的关键基石是求和规则的概念,该求和规则试图通过一小部分原子的加权和有效地近似晶体原子整体的总哈密顿量。 。在这项工作中,我们提出了一种新颖的,完全基于非局部能量的QC方法公式,并通过常规的能量采样方案支持了遗留和新的求和规则。我们的公式在概念上不区分原子区域和粗粒度区域,因此无需域耦合接口即可实现无缝桥接。在此结构中,我们引入了一类新的求和规则,该规则利用此QC公式的仿射运动学来最准确地积分感兴趣的热力学量。通过分析能量和杂散力误差,将这类新的求和规则与常用规则进行比较,我们发现,在任意仿射变形下,新规则在大元素范围内不会产生任何残余或杂散力伪像,同时使我们能够无缝地连接到完整的原子学。通过一整套具有二维和三维空间非均匀QC离散化的示例,我们验证了新的求和规则与所有可比的先前求和规则相比,都显示出显着较小的力伪影和能量逼近误差。由于这些求和规则的独特结构,我们还使用新公式来研究具有较大自由表面区域的方案,这是QC方法以前无法解决的一类问题。最后,我们介绍了新方法的高性能,分布式内存实现的关键组成部分,其中包括支持无与伦比的变形水平的新颖算法。总体而言,这种新的公式和实现方式使我们能够有效地执行包含空前数量的自由度和低逼近误差的仿真。

著录项

  • 作者

    Amelang, Jeff.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Mechanical engineering.;Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 232 p.
  • 总页数 232
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:39:30

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号