首页> 外文期刊>Journal of the American Chemical Society >The Mitochondrial Peptide Humanin Targets but Does Not Denature Amyloid Oligomers in Type Ⅱ Diabetes
【24h】

The Mitochondrial Peptide Humanin Targets but Does Not Denature Amyloid Oligomers in Type Ⅱ Diabetes

机译:线粒体肽Humanin靶向但不会变性Ⅱ型糖尿病的淀粉样蛋白寡聚体

获取原文
获取原文并翻译 | 示例
       

摘要

Mitochondrially derived peptides (MDPs) such as humanin (HN) have shown a remarkable ability to modulate neurological amyloids and apoptosis-associated proteins in cells and animal models. Recently, we found that humanin-like peptides also inhibit amyloid formation outside of neural environments in islet amyloid polypeptide (IAPP) fibrils and plaques, which are hallmarks of Type II diabetes. However, the biochemical basis for regulating amyloids through endogenous MDPs remains elusive. One hypothesis is that MDPs stabilize intermediate amyloid oligomers and discourage the formation of insoluble fibrils. To test this hypothesis, we carried out simulations and experiments to extract the dominant interactions between the S14G-HN mutant (HNG) and a diverse set of IAPP structures. Replica-exchange molecular dynamics suggests that MDPs cap the growth of amyloid oligomers. Simulations also indicate that HNG-IAPP heterodimers are 10 times more stable than IAPP homodimers, which explains the substoichiometric ability of HNG to inhibit amyloid growth. Despite this strong attraction, HNG does not denature IAPP. Instead, HNG binds IAPP near the disordered NFGAIL motif, wedging itself between amyloidogenic fragments. Shielding of NFGAIL-flanking fragments reduces the formation of parallel IAPP beta-sheets and subsequent nucleation of mature amyloid fibrils. From ThT spectroscopy and electron microscopy, we found that HNG does not deconstruct mature IAPP fibrils and oligomers, consistent with the simulations and our proposed hypothesis. Taken together, this work provides new mechanistic insight into how endogenous MDPs regulate pathological amyloid growth at the molecular level and in highly substoichiometric quantities, which can be exploited through peptidomimetics in diabetes or Alzheimer's disease.
机译:线粒体衍生的肽(MDP),例如人源蛋白(HN)已显示出在细胞和动物模型中调节神经淀粉样蛋白和凋亡相关蛋白的显着能力。最近,我们发现类人源素类肽还抑制胰岛淀粉样多肽(IAPP)纤维和斑块中神经环境外部的淀粉样蛋白形成,这是II型糖尿病的标志。但是,通过内源性MDP调节淀粉样蛋白的生化基础仍然难以捉摸。一种假设是MDP可稳定中间淀粉样低聚物并阻止不溶性原纤维的形成。为了验证该假设,我们进行了模拟和实验,以提取S14G-HN突变体(HNG)与各种IAPP结构之间的主要相互作用。复制子交换分子动力学表明,MDP限制了淀粉样蛋白低聚物的生长。模拟还表明,HNG-IAPP异二聚体的稳定性比IAPP同二聚体高10倍,这解释了HNG抑制淀粉样蛋白生长的亚化学计量能力。尽管有这种强大的吸引力,但HNG不会使IAPP变性。取而代之的是,HNG在无序的NFGAIL基序附近结合IAPP,从而在淀粉样蛋白生成片段之间楔入自身。屏蔽NFGAIL侧翼片段减少了平行IAPPβ-折叠的形成以及随后的成熟淀粉样原纤维成核。通过ThT光谱和电子显微镜,我们发现HNG不会解构成熟的IAPP原纤维和低聚物,这与模拟和我们提出的假设一致。综上所述,这项工作为内源性MDP如何在分子水平和高度亚化学计量的量上调节病理性淀粉样蛋白的生长提供了新的机制性见解,可以通过肽模拟物在糖尿病或阿尔茨海默氏病中加以利用。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2019年第36期|14168-14179|共12页
  • 作者单位

    Yale Sch Med Dept Pathol New Haven CT 06520 USA|Yale Univ Dept Mol Biophys & Biochem POB 6666 New Haven CT 06520 USA;

    Univ Southern Calif Keck Sch Med Dept Biochem & Mol Biol Los Angeles CA 90033 USA|Univ Southern Calif Keck Sch Med Zilkha Neurogenet Inst Los Angeles CA 90033 USA;

    Univ Southern Calif Keck Sch Med Dept Biochem & Mol Biol Los Angeles CA 90033 USA|Univ Southern Calif Keck Sch Med Zilkha Neurogenet Inst Los Angeles CA 90033 USA|Reg Hosp Dept Emergency Med St Paul MN 55101 USA;

    Univ Calif Santa Barbara Dept Chem & Biochem Santa Barbara CA 93106 USA|Univ Calif Santa Barbara Dept Phys Santa Barbara CA 93106 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:58:41

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号