首页> 外文期刊>Journal of the American Chemical Society >Radical Rebound Hydroxylation Versus H-Atom Transfer in Non- Heme Iron(Ⅲ)-Hydroxo Complexes: Reactivity and Structural Differentiation
【24h】

Radical Rebound Hydroxylation Versus H-Atom Transfer in Non- Heme Iron(Ⅲ)-Hydroxo Complexes: Reactivity and Structural Differentiation

机译:非血红素铁(Ⅲ)-羟基配合物中的自由基反弹羟基化与H-原子转移:反应性和结构差异

获取原文
获取原文并翻译 | 示例
           

摘要

The characterization of high-valent iron centers in enzymes has been aided by synthetic model systems that mimic their reactivity or structural and spectral features. For example, the cleavage of dioxygen often produces an iron(IV)-oxo that has been characterized in a number of enzymatic and synthetic systems. In non-heme 2-oxogluterate dependent (iron-2OG) enzymes, the ferryl species abstracts an H-atom from bound substrate to produce the proposed iron(III)-hydroxo and caged substrate radical. Most iron-2OG enzymes perform a radical rebound hydroxylation at the site of the H-atom abstraction (HAA); however, recent reports have shown that certain substrates can be desaturated through the loss of a second H atom at a site adjacent to a heteroatom (N or O) for most native desaturase substrates. One proposed mechanism for the removal of the second H-atom involves a polar-cleavage mechanism (electron transfer-proton transfer) by the iron(III)-hydroxo, as opposed to a second HAA. Herein we report the synthesis and characterization of a series of iron complexes with hydrogen bonding interactions between bound aquo or hydroxo ligands and the secondary coordination sphere in ferrous and ferric complexes. Interconversion among the iron species is accomplished by stepwise proton or electron addition or subtraction, as well as H-atom transfer (HAT). The calculated bond dissociation free energies (BDFEs) of two ferric hydroxo complexes, differentiated by their noncovalent interactions and reactivity, suggest that neither complex is capable of activating even weak C-H bonds, lending further support to the proposed mechanism for desaturation in iron-2OG desaturase enzymes. Additionally, the ferric hydroxo species are differentiated by their reactivity toward performing a radical rebound hydroxylation of triphenylmethylradical. Our findings should encourage further study of the desaturase systems that may contain unique H-bonding motifs proximal to the active site that help bias substrate desaturation over hydroxylation.
机译:酶中高价铁中心的表征已通过模拟其反应性或结构和光谱特征的合成模型系统进行了辅助。例如,双氧的裂解通常产生铁(IV)-氧代,其已在许多酶促和合成系统中表征。在非血红素依赖于2-氧戊二酸酯的酶(铁2OG)中,亚铁物种从结合的底物上提取H原子以产生拟议的铁(III)-羟基和笼状底物自由基。多数铁2OG酶在H原子提取(HAA)的位点进行自由基反弹羟基化作用。但是,最近的报道表明,对于大多数天然去饱和酶底物,某些底物可通过在杂原子(N或O)附近的第二个H原子的损失而被脱饱和。与第二HAA相反,一种提出的用于去除第二H原子的机理涉及通过铁(III)-羟基的极性裂解机理(电子转移-质子转移)。本文中,我们报道了一系列铁配合物的合成和表征,这些配合物在结合的水合或羟基配体与亚铁和铁配合物中的次级配位球之间具有氢键相互作用。铁质之间的相互转化通过逐步质子或电子的加或减以及H原子转移(HAT)来实现。计算出的两个铁羟基复合物的键解离自由能(BDFE),通过它们的非共价相互作用和反应性来区分,表明这两种络合物均不能激活弱的CH键,从而进一步支持了拟议的铁2OG去饱和酶去饱和机理酶。另外,铁羟基物质通过它们对进行三苯基甲基自由基的自由基回弹羟基化的反应性来区分。我们的发现应鼓励对去饱和酶系统进行进一步研究,该系统可能在活性位点附近包含独特的H键基序,从而有助于使底物去饱和度超过羟基化。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2019年第16期|6639-6650|共12页
  • 作者单位

    Univ Illinois, Sch Chem Sci, 600 South Mathews Ave, Urbana, IL 61801 USA;

    Univ Illinois, Sch Chem Sci, 600 South Mathews Ave, Urbana, IL 61801 USA;

    Univ Illinois, Sch Chem Sci, 600 South Mathews Ave, Urbana, IL 61801 USA;

    Univ St Thomas, Dept Chem, 2115 Summit Ave, St Paul, MN 55105 USA;

    Univ Illinois, Sch Chem Sci, 600 South Mathews Ave, Urbana, IL 61801 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号