首页> 外文期刊>Journal of the American Chemical Society >Bacterial Cell Wall Modification with a Glycolipid Substrate
【24h】

Bacterial Cell Wall Modification with a Glycolipid Substrate

机译:糖脂底物对细菌细胞壁的修饰

获取原文
获取原文并翻译 | 示例
       

摘要

Despite the ubiquity and importance of glycans in biology, methods to probe their structures in cells are limited. Mammalian glycans can be modulated using metabolic incorporation, a process in which non-natural sugars are taken up by cells, converted to nucleotide sugar intermediates, and incorporated into glycans via biosynthetic pathways. These studies have revealed that glycan intermediates can be shunted through multiple pathways, and this complexity can be heightened in bacteria, as they can catabolize diverse glycans. We sought to develop a strategy that probes structures recalcitrant to metabolic incorporation and that complements approaches focused on nucleotide sugars. We reasoned that lipid-linked glycans, which are intermediates directly used in glycan biosynthesis, would offer an alternative. We generated synthetic arabinofuranosyl phospholipids to test this strategy in Corynebacterium glutamicum and Mycobacterium smegmatis, organisms that serve as models of Mycobacterium tuberculosis. Using a C. glutamicum mutant that lacks arabinan, we identified synthetic glycosyl donors whose addition restores cell wall arabinan, demonstrating that non-natural glycolipids can serve as biosynthetic intermediates and function in chemical complementation. The addition of an isotopically labeled glycan substrate facilitated cell wall characterization by NMR. Structural analysis revealed that all five known arabinofuranosyl transferases could process the exogenous lipid-linked sugar donor, allowing for the full recovery of the cell envelope. The lipid-based probe could also rescue wild-type cells treated with an inhibitor of cell wall biosynthesis. Our data indicate that surrogates of natural lipid-linked glycans can intervene in the cell's traditional workflow, indicating that biosynthetic incorporation is a powerful strategy for probing glycan structure and function.
机译:尽管聚糖在生物学中无处不在且很重要,但在细胞中探测其结构的方法仍然有限。可以使用代谢掺入来调节哺乳动物的聚糖,在该过程中,非天然糖被细胞吸收,转化为核苷酸糖中间体,并通过生物合成途径掺入聚糖中。这些研究表明,聚糖中间体可以通过多种途径分流,并且在细菌中这种复杂性可以提高,因为它们可以分解各种聚糖。我们试图开发一种策略,以探测对代谢掺入具有顽固性的结构,并补充针对核苷酸糖的方法。我们认为脂质连接的聚糖是聚糖生物合成中直接使用的中间体,将提供另一种选择。我们生成了合成的阿拉伯呋喃糖基磷脂,以在谷氨酸棒杆菌和耻垢分枝杆菌(作为结核分枝杆菌模型的生物)中测试该策略。使用缺少阿拉伯聚糖的谷氨酸棒杆菌突变体,我们鉴定了合成的糖基供体,其添加恢复了细胞壁的阿拉伯聚糖,表明非天然糖脂可以用作生物合成中间体并在化学互补中起作用。同位素标记的聚糖底物的添加有助于通过NMR表征细胞壁。结构分析表明,所有五个已知的阿拉伯呋喃糖基转移酶都可以加工外源性脂质连接的糖供体,从而使细胞被膜完全恢复。基于脂质的探针还可以挽救用细胞壁生物合成抑制剂处理过的野生型细胞。我们的数据表明,天然脂质连接聚糖的替代物可以干预细胞的传统工作流程,表明生物合成掺入是探测聚糖结构和功能的强大策略。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2019年第23期|9262-9272|共11页
  • 作者单位

    MIT, Dept Chem, Cambridge, MA 02139 USA;

    Univ Wisconsin, Dept Chem, 1101 Univ Ave, Madison, WI 53706 USA|Colorado State Univ, Dept Immunol & Pathol, 200 Lake St, Ft Collins, CO 80523 USA;

    Univ Wisconsin, Dept Chem, 1101 Univ Ave, Madison, WI 53706 USA|Gilead Sci Inc, 333 Lakeside Dr, Foster City, CA 94404 USA;

    MIT, Dept Chem, Cambridge, MA 02139 USA;

    MIT, Dept Chem, Cambridge, MA 02139 USA|Univ Wisconsin, Dept Chem, 1101 Univ Ave, Madison, WI 53706 USA|Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:18:05

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号