首页> 外文期刊>Journal of the American Chemical Society >Exploring the Electronic and Mechanical Properties of Protein Using Conducting Atomic Force Microscopy
【24h】

Exploring the Electronic and Mechanical Properties of Protein Using Conducting Atomic Force Microscopy

机译:用导电原子显微镜探索蛋白质的电子和机械性能

获取原文
获取原文并翻译 | 示例
       

摘要

In interfacing man-made electronic components with specifically folded biomacromolecules, the perturbative effects of junction structure on any signal generated should be considered. We report herein on the electron-transfer characteristics of the blue copper metalloprotein, azurin, as characterized at a refined level by conducting atomic force microscopy (C-AFM). Specifically, the modulation of current-voltage (I-V) behavior with compressional force has been examined. In the absence of assignable resonant electron tunneling within the confined bias region, from -1 to 1 V, the I-V behavior was analyzed with a modified Simmons formula. To interpret the variation of tunneling barrier height and barrier length obtained by fitting with the modified Simmons formula, an atom packing density model associated with protein mechanical deformation was proposed and simulated by molecular dynamics. The barrier heights determined at the minimum forces necessary for stable electrical contact correlate reasonably well with those estimated from bulk biophysical (electroanalytical and photochemical) experiments previously reported. At higher forces, the tunnel barrier decreases to fall within the range observed with saturated organic systems. Molecular dynamics simulations revealed changes in secondary structure and atomic density of the protein with respect to compression. At low compression, where transport measurements are made, secondary structure is retained, and atomic packing density is observed to increase linearly with force. These predictions, and those made at higher compression, are consistent with both experimentally observed modulations of tunneling barrier height with applied force and the applicability of the atom packing density model of electron tunneling in proteins to molecular-level analyses.
机译:在将人造电子元件与特定折叠的生物大分子连接时,应考虑结结构对产生的任何信号的微扰作用。我们在此报告了蓝色铜金属蛋白,天青蛋白的电子转移特性,通过原子力显微镜(C-AFM)表征了精细水平。具体地,已经研究了利用压缩力对电流-电压(I-V)行为的调制。在-1至1 V的受限偏置区域内不存在可分配的共振电子隧穿的情况下,使用改良的Simmons公式分析了I-V行为。为了解释通过拟合改良的Simmons公式获得的隧穿势垒高度和势垒长度的变化,提出了与蛋白质机械变形相关的原子堆积密度模型,并通过分子动力学进行了模拟。由稳定电接触所需的最小力确定的势垒高度与先前报道的大量生物物理(电分析和光化学)实验估计的势垒高度合理相关。在较高的作用力下,隧道势垒降低至落入饱和有机体系观察到的范围内。分子动力学模拟揭示了蛋白质二级结构和原子密度相对于压缩的变化。在低压缩下,进行传输测量,保留了二级结构,观察到原子堆积密度随力线性增加。这些预测以及在较高压缩率下所作的预测与实验观察到的施加力对隧穿势垒高度的调制以及蛋白质中电子隧穿的原子堆积密度模型对分子水平分析的适用性都一致。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2004年第17期|p. 5601-5609|共9页
  • 作者单位

    Inorganic Chemistry Laboratory, Department of Chemistry, South Parks Road, Oxford, OX1 3QR;

    Inorganic Chemistry Laboratory, Department of Chemistry, South Parks Road, Oxford, OX1 3QR;

    Bionanotechnology IRC, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, and Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU United Kingdom;

    Bionanotechnology IRC, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, and Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU United Kingdom;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

  • 入库时间 2022-08-18 03:24:47

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号