首页> 外文期刊>Journal of the American Chemical Society >Efficiency of Various Lattices from Hard Ball to Soft Ball: Theoretical Study of Thermodynamic Properties of Dendrimer Liquid Crystal from Atomistic Simulation
【24h】

Efficiency of Various Lattices from Hard Ball to Soft Ball: Theoretical Study of Thermodynamic Properties of Dendrimer Liquid Crystal from Atomistic Simulation

机译:从硬球到软球的各种晶格效率:基于原子模拟的树枝状液晶的热力学性质的理论研究

获取原文
获取原文并翻译 | 示例
           

摘要

Self-assembled supramolecular organic liquid crystal structures at nanoscale have potential applications in molecular electronics, photonics, and porous nanomaterials. Most of these structures are formed by aggregation of soft spherical supramolecules, which have soft coronas and overlap each other in the packing process. Our main focus here is to study the possible packing mechanisms via molecular dynamics simulations at the atomistic level. We consider the relative stability of various lattices packed by the soft dendrimer balls, first synthesized and characterized by Percec et al. (J. Am. Chem. Soc. 1997, 119, 1539) with different packing methods. The dendrons, which form the soft dendrimer balls, have the character of a hard aromatic region from the point of the cone to the edge with C_(12) alkane "hair". After the dendrons pack into a sphere, the core of the sphere has the hard aromatic groups, while the surface is covered with the C_(12) alkane "hair". In our studies, we propose three ways to organize the hair on the balls, Smooth/Valentino balls, Sticky/Einstein balls, and Asymmetric/Punk balls, which lead to three different packing mechanisms, Slippery, Sticky, and Anisotropic, respectively. We carry out a series of molecular dynamics (MD) studies on three plausible crystal structures (A15, FCC, and BCC) as a function of density and analyze the MD based on the vibrational density of state (DoS) method to extract the enthalpy, entropy, and free energies of these systems. We find that anisotropic packed A15 is favored over FCC, BCC lattices. Our predicted X-ray intensities of the best structures are in excellent agreement with experiment. "Anisotropic ball packing" proposed here plays an intermediate role between the enthalpy-favored "disk packing" and entropy-favored "isotropic ball packing", which explains the phase transitions at different temperatures. Free energies of various lattices at different densities are essentially the same, indicating that the preferred lattice is not determined during the packing process. Both enthalpy and entropy decrease as the density increases. Free energy change with volume shows two stable phases: the condensed phase and the isolated micelle phase. The interactions between the soft dendrimer balls are found to be lattice dependent when described by a two-body potential because the soft ball self-adjusts its shape and interaction in different lattices. The shape of the free energy potential is similar to that of the "square shoulder potential". A model explaining the packing efficiency of ideal soft balls in various lattices is proposed in terms of geometrical consideration.
机译:纳米级自组装的超分子有机液晶结构在分子电子学,光子学和多孔纳米材料中具有潜在的应用。这些结构中的大多数是由软球形超分子的聚集形成的,这些球形超分子具有软电晕并在堆积过程中相互重叠。我们的主要重点是通过原子动力学的分子动力学模拟研究可能的堆积机理。我们考虑由Percec等人首先合成和表征的软树枝状聚合物球填充的各种晶格的相对稳定性。 (J.Am.Chem.Soc.1997,119,1539)具有不同的包装方法。形成柔软的树枝状聚合物球的树枝状分子具有从锥角到带有C_(12)烷烃“头发”的边缘的硬质芳香区域。树突堆积成一个球体后,该球体的核心具有硬的芳香族基团,而其表面则被C_(12)烷烃“头发”覆盖。在我们的研究中,我们提出了三种方法来组织球上的头发,光滑/华伦天奴球,粘性/爱因斯坦球和不对称/朋克球,这分别导致了三种不同的填充机制:滑滑,粘滞和各向异性。我们对三种可能的晶体结构(A15,FCC和BCC)作为密度的函数进行了一系列的分子动力学(MD)研究,并根据状态振动密度(DoS)方法分析了MD以提取焓,熵和这些系统的自由能。我们发现各向异性填充的A15比FCC,BCC晶格更受青睐。我们预测的最佳结构的X射线强度与实验非常吻合。此处提出的“各向异性球填料”在焓变的“盘状填料”和熵变的“各向同性球填料”之间起中间作用,这解释了在不同温度下的相变。各种晶格在不同密度下的自由能基本相同,这表明在填充过程中未确定优选的晶格。焓和熵都随着密度的增加而减小。随体积变化的自由能显示出两个稳定的阶段:冷凝阶段和孤立的胶束阶段。当用两体电位描述时,发现软树枝状聚合物球之间的相互作用是晶格相关的,因为软球会自动调整其形状和在不同晶格中的相互作用。自由能势的形状类似于“方肩势”的形状。从几何角度出发,提出了一个解释理想软球在各种晶格中的填充效率的模型。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2004年第6期|p. 1872-1885|共14页
  • 作者单位

    Materials and Process Simulation Center (Mail code 139-74), Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125;

    Materials and Process Simulation Center (Mail code 139-74), Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125;

    Materials and Process Simulation Center (Mail code 139-74), Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号