...
首页> 外文期刊>Journal of the American Chemical Society >DFT and ONIOM(DFT:MM) Studies on Co C Bond Cleavage and Hydrogen Transfer in B_(12)-Dependent Methylmalonyl-CoA Mutase. Stepwise or Concerted Mechanism?
【24h】

DFT and ONIOM(DFT:MM) Studies on Co C Bond Cleavage and Hydrogen Transfer in B_(12)-Dependent Methylmalonyl-CoA Mutase. Stepwise or Concerted Mechanism?

机译:DFT和ONIOM(DFT:MM)研究B_(12)依赖性甲基丙二酰辅酶A突变酶中Co C键的裂解和氢转移。分步机制还是协调机制?

获取原文
获取原文并翻译 | 示例

摘要

The considerable protein effect on the homolytic Co-C bond cleavage to form the 5'-deoxyadenosyl (Ado) radical and cob(ll)alamin and the subsequent hydrogen transfer from the methyl-malonyl-CoA substrate to the Ado radical in the methylmalonyl-CoA mutase (MMCM) have been extensively studied by DFT and ONIOM(DFT/MM) methods. Several quantum models have been used to systematically study the protein effect. The calculations have shown that the Co-C bond dissociation energy is very much reduced in the protein, compared to that in the gas phase. The large protein effect can be decomposed into the cage effect, the effect of coenzyme geometrical distortion, and the protein MM effect. The largest contributor is the MM effect, which mainly consists of the interaction of the QM part of the coenzyme with the MM part of the coenzyme and the surrounding residues. In particular, Glu370 plays an important role in the Co-C bond cleavage process. These effects tremendously enhance the stability of the Co-C bond cleavage state in the protein. The initial Co-C bond cleavage and the subsequent hydrogen transfer were found to occur in a stepwise manner in the protein, although the concerted pathway for the Co-C bond cleavage coupled with the hydrogen transfer is more favored in the gas phase. The assumed concerted transition state in the protein has more deformation of the coenzyme and the substrate and has less interaction with the protein than the stepwise route. Key factors and residues in promoting the enzymatic reaction rate have been discussed in detail.
机译:蛋白质对均质Co-C键裂解形成5'-脱氧腺苷(Ado)自由基和Cob(II)alamin以及随后的氢从甲基-丙二酰基-CoA底物转移至甲基丙二酰基- CoA突变酶(MMCM)已通过DFT和ONIOM(DFT / MM)方法进行了广泛研究。已经使用了几种量子模型来系统地研究蛋白质的作用。计算表明,与气相相比,蛋白质中的Co-C键离解能大大降低。大蛋白效应可分解为笼效应,辅酶几何畸变效应和蛋白MM效应。最大的贡献者是MM效应,其主要由辅酶的QM部分与辅酶的MM部分和周围残基的相互作用组成。特别地,Glu370在Co-C键裂解过程中起重要作用。这些作用极大地增强了蛋白质中Co-C键裂解状态的稳定性。尽管在气相中更有利于Co-C键裂解的协同途径与氢转移结合,但发现蛋白质中的Co-C键初始裂解和随后的氢转移是逐步发生的。与逐步途径相比,蛋白质中假定的一致过渡态具有更大的辅酶和底物变形,并且与蛋白质的相互作用更少。已经详细讨论了促进酶促反应速率的关键因素和残基。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2009年第14期|5115-5125|共11页
  • 作者单位

    Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan;

    Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan;

    Institute of Applied Radiation Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland;

    Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号