首页> 外文期刊>Journal of the American Chemical Society >Dissection of Complex Molecular Recognition Interfaces
【24h】

Dissection of Complex Molecular Recognition Interfaces

机译:解剖复杂的分子识别接口

获取原文
获取原文并翻译 | 示例
           

摘要

The synthesis of a family of zinc porphyrins and pyridine ligands equipped with peripheral H-bonding functionality has provided access to a wide range of closely related supramolecular complexes featuring between zero and four intramolecular H-bonds. An automated UV/vis titration system was used to characterize 120 different complexes, and these data were used to construct a large of number of different chemical double mutant cycles to quantify the intramolecular H-bonding interactions. The results probe the quantitative structure-activity relationship that governs cooperativity in the assembly of complex molecular recognition interfaces. Specifically, variations in the chemical structures of the complexes have allowed us to change the supramolecular architecture, conformational flexibility, geometric complementarity, the number and nature of the H-bond interactions, and the overall stability of the complex. The free energy contributions from individual H-bonds are additive, and there is remarkably little variation with architecture in the effective molarity for the formation of intramolecular interactions. Intramolecular H-bonds are not observed in complexes where they are geometrically impossible, but there are no cases where excellent geometric complementarity leads to very high affinities. Similarly, changes in conformational flexibility seem to have limited impact on the values of effective molarity (EM). The major variation that was found for all of the 48 intramolecular interactions that were examined using double mutant cycles is that the values of EM for intramolecular carboxylate ester-phenol H-bonds (200 mM) are an order of magnitude larger than those found for phosphonate diester-phenol H-bonds (30 mM). The corresponding intermolecular phosphonate diester-phenol H-bonds are 2 orders of magnitude more stable than carboxylate ester-phenol H-bonds, and the large differences in EM may be due to some kind of compensation effect, where the stronger H-bond is harder to make, because it imposes tighter constraints on the geometry of the complex.
机译:具有外围H键功能的锌卟啉和吡啶配体家族的合成提供了进入广泛的,具有零至四个分子内H键的密切相关的超分子复合物的途径。自动化的UV / vis滴定系统用于表征120种不同的复合物,这些数据用于构建大量不同的化学双突变体循环,以量化分子内H键相互作用。结果探讨了定量的结构-活性关系,该关系控制复杂分子识别界面组装中的协同作用。具体而言,配合物化学结构的变化使我们能够改变超分子结构,构象柔韧性,几何互补性,H键相互作用的数量和性质以及配合物的整体稳定性。来自各个氢键的自由能贡献是加和的,并且在形成分子内相互作用的有效摩尔浓度方面,结构几乎没有变化。在几何上不可能的配合物中,未观察到分子内氢键,但在任何情况下,极好的几何互补性都不会导致很高的亲和力。同样,构象柔韧性的变化似乎对有效摩尔浓度(EM)的值影响有限。使用双突变周期检查的所有48种分子内相互作用的主要变化是,分子内羧酸酯-酚H键(200 mM)的EM值比膦酸酯的EM值大一个数量级。二酯-酚H键(30 mM)。相应的分子间膦酸酯二酯-酚H键比羧酸酯-酚H键稳定2个数量级,并且EM的较大差异可能归因于某种补偿效应,其中较强的H键较难因为它对复合体的几何形状施加了更严格的约束。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2011年第3期|p.582-594|共13页
  • 作者单位

    Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom;

    rnDepartment of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom;

    rnDepartment of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号