首页> 外文期刊>Journal of the American Chemical Society >Anomalous High Ionic Conductivity of Nanoporous β-Li_3PS_4
【24h】

Anomalous High Ionic Conductivity of Nanoporous β-Li_3PS_4

机译:纳米多孔β-Li_3PS_4的反常高离子电导率

获取原文
获取原文并翻译 | 示例
       

摘要

Lithium-ion-conducting solid electrolytes hold promise for enabling high-energy battery chemistries and circumventing safety issues of conventional lithium batteries. Achieving the combination of high ionic conductivity and a broad electrochemical window in solid electrolytes is a grand challenge for the synthesis of battery materials. Herein we show an enhancement of the room-temperature lithium-ion conductivity by 3 orders of magnitude through the creation of nanostructured Li_3PS_4. This material has a wide electrochemical window (5 V) and superior chemical stability against lithium metal. The nanoporous structure of Li_3PS_4 reconciles two vital effects that enhance the ionic conductivity: (1) the reduction of the dimensions to a nanometer-sized framework stabilizes the high-conduction β phase that occurs at elevated temperatures, and (2) the high surface-to-bulk ratio of nanoporous β-Li_3PS_4 promotes surface conduction. Manipulating the ionic conductivity of solid electrolytes has far-reaching implications for materials design and synthesis in a broad range of applications, including batteries, fuel cells, sensors, photovoltaic systems, and so forth.
机译:传导锂离子的固体电解质有望实现高能电池的化学特性,并规避常规锂电池的安全性问题。在固体电解质中实现高离子电导率和宽阔的电化学窗口的结合是电池材料合成的巨大挑战。本文中,我们通过创建纳米结构的Li_3PS_4,将室温锂离子电导率提高了3个数量级。该材料具有宽的电化学窗口(5 V)和对锂金属的优异化学稳定性。 Li_3PS_4的纳米孔结构协调了两个重要的作用,这些作用增强了离子电导率:(1)将尺寸减小至纳米尺寸的骨架可稳定发生在高温下的高电导率β相,以及(2)纳米多孔β-Li_3PS_4的体积比促进表面传导。在包括电池,燃料电池,传感器,光伏系统等广泛的应用中,操纵固体电解质的离子电导率对材料设计和合成具有深远的影响。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2013年第3期|975-978|共4页
  • 作者单位

    Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States;

    Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States;

    Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States,Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States;

    Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States;

    Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States;

    Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States;

    Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States;

    Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States;

    Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States;

    Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:12:24

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号