首页> 外文期刊>Journal of the American Chemical Society >Unraveling the Interplay of Backbone Rigidity and Electron Rich Side-Chains on Electron Transfer in Peptides: The Realization of Tunable Molecular Wires
【24h】

Unraveling the Interplay of Backbone Rigidity and Electron Rich Side-Chains on Electron Transfer in Peptides: The Realization of Tunable Molecular Wires

机译:揭示骨架刚性与富电子侧链对肽中电子转移的相互作用:可调谐分子线的实现

获取原文
获取原文并翻译 | 示例
       

摘要

Electrochemical studies are reported on a series of peptides constrained into either a 3_(10)-helix (1-6) or β-strand (7-9) conformation, with variable numbers of electron rich alkene containing side chains. Peptides (1 and 2) and (7 and 8) are further constrained into these geometries with a suitable side chain tether introduced by ring closing metathesis (RCM). Peptides 1, 4 and 5, each containing a single alkene side chain reveal a direct link between backbone rigidity and electron transfer, in isolation from any effects due to the electronic properties of the electron rich side-chains. Further studies on the linear peptides 3-6 confirm the ability of the alkene to facilitate electron transfer through the peptide. A comparison of the electrochemical data for the unsaturated tethered peptides (1 and 7) and saturated tethered peptides (2 and 8) reveals an interplay between backbone rigidity and effects arising from the electron rich alkene side-chains on electron transfer. Theoretical calculations on β-strand models analogous to 7, 8 and 9 provide further insights into the relative roles of backbone rigidity and electron rich side-chains on intramolecular electron transfer. Furthermore, electron population analysis confirms the role of the alkene as a "stepping stone" for electron transfer. These findings provide a new approach for fine-tuning the electronic properties of peptides by controlling backbone rigidity, and through the inclusion of electron rich side-chains. This allows for manipulation of energy barriers and hence conductance in peptides, a crucial step in the design and fabrication of molecular-based electronic devices.
机译:电化学研究报道了一系列被限制为3_(10)-螺旋(1-6)或β-链(7-9)构象的肽,具有可变数量的含侧链的富电子烯烃。肽(1和2)和(7和8)进一步通过闭环复分解(RCM)引入的合适侧链束缚,被限制在这些几何形状中。分别包含单个烯烃侧链的肽1、4和5揭示了主链刚性与电子转移之间的直接联系,与由于富电子侧链的电子特性所产生的任何影响均没有关系。对线性肽3-6的进一步研究证实了烯烃促进电子通过肽转移的能力。对不饱和拴系肽(1和7)和饱和拴系肽(2和8)的电化学数据的比较揭示了骨架刚性与富电子烯侧链对电子转移产生的影响之间的相互作用。关于类似于7、8和9的β链模型的理论计算,可进一步了解骨架刚性和富电子侧链在分子内电子转移中的相对作用。此外,电子种群分析证实了烯烃作为电子转移的“垫脚石”的作用。这些发现提供了一种新的方法,可通过控制主链刚度并通过包含富电子侧链来微调肽的电子性质。这允许操纵能垒,从而操纵肽中的电导,这是基于分子的电子设备设计和制造中的关键步骤。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2014年第35期|12479-12488|共10页
  • 作者单位

    ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of Chemistry and Physics, The University of Adelaide, Adelaide, South Australia 5005, Australia;

    ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of Chemistry and Physics, The University of Adelaide, Adelaide, South Australia 5005, Australia;

    Centre for Nanoscale Science and Technology, School of Chemical & Physical Science, Flinders University, Bedford Park, South Australia 5042, Australia;

    Centre for Nanoscale Science and Technology, School of Chemical & Physical Science, Flinders University, Bedford Park, South Australia 5042, Australia;

    ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of Chemistry and Physics, The University of Adelaide, Adelaide, South Australia 5005, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:11:10

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号