首页> 美国卫生研究院文献>ACS AuthorChoice >Unravelingthe Interplay of Backbone Rigidity andElectron Rich Side-Chains on Electron Transfer in Peptides: The Realizationof Tunable Molecular Wires
【2h】

Unravelingthe Interplay of Backbone Rigidity andElectron Rich Side-Chains on Electron Transfer in Peptides: The Realizationof Tunable Molecular Wires

机译:拆散骨干刚性与肽中电子转移的富电子旁链:实现可调谐分子线

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Electrochemical studies are reported on a series of peptides constrained into either a 310-helix (>1–>6) or β-strand (>7–>9) conformation, with variable numbers of electron rich alkene containing side chains. Peptides (>1 and >2) and (>7 and >8) are further constrained into these geometries with a suitable side chain tether introduced by ring closing metathesis (RCM). Peptides >1, >4 and >5, each containing a single alkene side chain reveal a direct link between backbone rigidity and electron transfer, in isolation from any effects due to the electronic properties of the electron rich side-chains. Further studies on the linear peptides >3–>6 confirm the ability of the alkene to facilitate electron transfer through the peptide. A comparison of the electrochemical data for the unsaturated tethered peptides (>1 and >7) and saturated tethered peptides (>2 and >8) reveals an interplay between backbone rigidity and effects arising from the electron rich alkene side-chains on electron transfer. Theoretical calculations on β-strand models analogous to >7, >8 and >9 provide further insights into the relative rolesof backbone rigidity and electron rich side-chains on intramolecularelectron transfer. Furthermore, electron population analysis confirmsthe role of the alkene as a “stepping stone” for electrontransfer. These findings provide a new approach for fine-tuning theelectronic properties of peptides by controlling backbone rigidity,and through the inclusion of electron rich side-chains. This allowsfor manipulation of energy barriers and hence conductance in peptides,a crucial step in the design and fabrication of molecular-based electronicdevices.
机译:电化学研究报道了一系列限制在310螺旋(> 1 – > 6 )或β-链(> 7 – < strong> 9 )构象,带有可变数量的含侧链的富电子烯烃。肽(> 1 和> 2 )和(> 7 和> 8 )进一步限制在这些几何形状中闭环易位(RCM)引入的链。分别包含单个烯烃侧链的肽> 1 ,> 4 和> 5 揭示了骨架刚性和电子转移之间的直接联系,与任何由于富电子侧链的电子性质,这种效应。对线性肽> 3 – > 6 的进一步研究证实了烯烃促进电子通过肽转移的能力。不饱和拴系肽(> 1 和> 7 )和饱和拴系肽(> 2 和> 8 的电化学数据的比较strong>)揭示了骨架刚性与富电子的烯侧链对电子转移产生的影响之间的相互作用。与> 7 ,> 8 和> 9 类似的β链模型的理论计算提供了进一步的见解分子内骨架刚性和富电子侧链的关系电子转移。此外,电子种群分析证实烯烃作为电子“垫脚石”的作用传递。这些发现提供了一种新方法来微调通过控制骨架刚性来控制肽的电子特性,并通过包含富电子的侧链。这允许为了操纵能垒并因此操纵肽中的电导,基于分子的电子设计和制造中的关键步骤设备。

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号