首页> 外文期刊>Journal of the American Chemical Society >Water-Polysaccharide Interactions in the Primary Cell Wall of Arabidopsis thaliana from Polarization Transfer Solid-State NMR
【24h】

Water-Polysaccharide Interactions in the Primary Cell Wall of Arabidopsis thaliana from Polarization Transfer Solid-State NMR

机译:极化转移固态NMR中拟南芥原代细胞壁中水与多糖的相互作用

获取原文
获取原文并翻译 | 示例
       

摘要

Polysaccharide-rich plant cell walls are hydrated under functional conditions, but the molecular interactions between water and polysaccharides in the wall have not been investigated. In this work, we employ polarization transfer solid-state NMR techniques to study the hydration of primary-wall polysaccharides of the model plant, Arabidopsis thaliana. By transferring water ~1H polarization to polysaccharides through distance- and mobility-dependent ~1H-~1H dipolar couplings and detecting it through polysaccharide ~(13)C signals, we obtain information about water proximity to cellulose, hemicellulose, and pectins as well as water mobility. Both intact and partially extracted cell wall samples are studied. Our results show that water-pectin polarization transfer is much faster than water-cellulose polarization transfer in all samples, but the extent of extraction has a profound impact on the water-polysaccharide spin diffusion. Removal of calcium ions and the consequent extraction of homogalacturonan (HG) significantly slowed down spin diffusion, while further extraction of matrix polysaccharides restored the spin diffusion rate. These trends are observed in cell walls with similar water content, thus they reflect inherent differences in the mobility and spatial distribution of water. Combined with quantitative analysis of the polysaccharide contents, our results indicate that calcium ions and HG gelation increase the amount of bound water, which facilitates spin diffusion, while calcium removal disrupts the gel and gives rise to highly dynamic water, which slows down spin diffusion. The recovery of spin diffusion rates after more extensive extraction is attributed to increased water-exposed surface areas of the polysaccharides. Water-pectin spin diffusion precedes water-cellulose spin diffusion, lending support to the single-network model of plant primary walls in which a substantial fraction of the cellulose surface is surrounded by pectins.
机译:富含多糖的植物细胞壁在功能条件下被水合,但尚未研究水与壁中多糖之间的分子相互作用。在这项工作中,我们采用极化转移固态NMR技术研究模型植物拟南芥的初生壁多糖的水合作用。通过将距离〜1H极化的水通过与距离和迁移率相关的〜1H-〜1H偶极偶合传递给多糖,并通过多糖〜(13)C信号对其进行检测,我们可以获得有关水与纤维素,半纤维素和果胶以及近邻的信息。水的流动性。研究完整和部分提取的细胞壁样品。我们的结果表明,在所有样品中水-果胶的极化转移都比水-纤维素的极化转移快得多,但是提取的程度对水-多糖的自旋扩散有深远的影响。去除钙离子并随后提取高半乳糖醛酸聚糖(HG)显着减慢了自旋扩散,而进一步提取基质多糖则恢复了自旋扩散速率。在含水量相似的细胞壁中观察到了这些趋势,因此它们反映了水的迁移率和空间分布的内在差异。结合对多糖含量的定量分析,我们的结果表明钙离子和HG凝胶化增加了结合水的量,从而促进了旋转扩散,而钙的去除破坏了凝胶并产生了高动态水,从而减慢了旋转扩散。在更广泛的提取之后,自旋扩散速率的恢复归因于多糖的暴露于水的表面积增加。水-果胶自旋扩散先于水-纤维素自旋扩散,为植物主要壁的单网络模型提供支持,在该模型中,大部分纤维素表面被果胶包围。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2014年第29期|10399-10409|共11页
  • 作者单位

    Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, United States;

    Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, United States;

    Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States;

    Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States;

    Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:11:07

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号