首页> 外文期刊>Journal of the American Chemical Society >Role of Hydrogen in Graphene Chemical Vapor Deposition Growth on a Copper Surface
【24h】

Role of Hydrogen in Graphene Chemical Vapor Deposition Growth on a Copper Surface

机译:氢在铜表面石墨烯化学气相沉积生长中的作用

获取原文
获取原文并翻译 | 示例
       

摘要

Synthesizing bilayer graphene (BLG), which has a band gap, is an important step in graphene application in microelectronics. Experimentally, it was broadly observed that hydrogen plays a crucial role in graphene chemical vapor deposition (CVD) growth on a copper surface. Here, by using ab initio calculations, we have revealed a crucial role of hydrogen in graphene CVD growth, terminating the graphene edges. Our study demonstrates the following. (ⅰ) At a low hydrogen pressure, the graphene edges are not passivated by H and thus tend to tightly attach to the catalyst surface. As a consequence, the diffusion of active C species into the area beneath the graphene top layer (GTL) is prohibited, and therefore, single-layer graphene growth is favored. (ⅱ) At a high hydrogen pressure, the graphene edges tend to be terminated by H, and therefore, its detachment from the catalyst surface favors the diffusion of active C species into the area beneath the GTL to form the adlayer graphene below the GTL; as a result, the growth of BLG or few-layer graphene (FLG) is preferred. This insightful understanding reveals a crucial role of H in graphene CVD growth and paves a way for the controllable synthesis of BLG or FLG. Besides, this study also provides a reasonable explanation for the hydrogen pressure-dependent graphene CVD growth behaviors on a Cu surface.
机译:合成具有带隙的双层石墨烯(BLG)是石墨烯在微电子学中应用的重要一步。在实验上,广泛观察到氢在铜表面上的石墨烯化学气相沉积(CVD)生长中起着至关重要的作用。在这里,通过从头算计算,我们发现了氢在石墨烯CVD生长中的重要作用,从而终止了石墨烯的边缘。我们的研究表明以下内容。 (ⅰ)在低氢压力下,石墨烯边缘不会被H钝化,因此趋于紧密附着在催化剂表面。结果,禁止了活性C物质扩散到石墨烯顶层(GTL)下方的区域,因此有利于单层石墨烯的生长。 (ⅱ)在高氢气压力下,石墨烯边缘倾向于被H终止,因此,其从催化剂表面的分离有利于活性C物质扩散到GTL下方的区域,从而在GTL下方形成吸附层石墨烯;结果,优选BLG或多层石墨烯(FLG)的生长。这种深刻的理解揭示了H在石墨烯CVD生长中的关键作用,并为BLG或FLG的可控合成铺平了道路。此外,该研究还为氢在铜表面上依赖于氢压力的石墨烯CVD生长行为提供了合理的解释。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2014年第8期|3040-3047|共8页
  • 作者单位

    Institute of Textile and Clothing, Hong Kong Polytechnic University, Kowloon, Hong Kong, People's Republic of China;

    Institute of Textile and Clothing, Hong Kong Polytechnic University, Kowloon, Hong Kong, People's Republic of China;

    Institute of Textile and Clothing, Hong Kong Polytechnic University, Kowloon, Hong Kong, People's Republic of China;

    Department of Mechanical Engineering and Materials Science, Department of Chemistry, and Richard E. Smalley Institute for Nanoscale Science and Technology, Rice University, Houston, Texas 77005, United States;

    Institute of Textile and Clothing, Hong Kong Polytechnic University, Kowloon, Hong Kong, People's Republic of China,Department of Mechanical Engineering and Materials Science, Department of Chemistry, and Richard E. Smalley Institute for Nanoscale Science and Technology, Rice University, Houston, Texas 77005, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:11:03

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号