首页> 外文期刊>Journal of the American Chemical Society >Epitaxial Stabilization between Intermetallic and Carbide Domains in the Structures of Mn_(16)SiC_4 and Mn_(17)Si_2C_4
【24h】

Epitaxial Stabilization between Intermetallic and Carbide Domains in the Structures of Mn_(16)SiC_4 and Mn_(17)Si_2C_4

机译:Mn_(16)SiC_4和Mn_(17)Si_2C_4结构中金属间和碳化物域之间的外延稳定

获取原文
获取原文并翻译 | 示例
       

摘要

The concept of frustration between competing geometrical or bonding motifs is frequently evoked in explaining complex phenomena in the structures and properties of materials. This idea is of particular importance for metallic systems, where frustration forms the basis for the design of metallic glasses, a source of diverse magnetic phenomena, and a rationale for the existence of intermetallics with giant unit cells containing thousands of atoms. Unlike soft materials, however, where conflicts can be synthetically encoded in the molecular structure, staging frustration in the metallic state is challenging due to the ease of macroscopic segregation of incompatible components. In this Article, we illustrate one approach for inducing the intergrowth of incompatible bonding motifs with the synthesis and characterization of two new intermetallic carbides: Mn_(16)SiC_4 (mC_42) and Mn_(17)Si_2C_4 (mP46). Similar to the phases MnsSiC and Mn_8Si_2C in the Mn-Si-C system, these compounds appear as intergrowths of Mn_3C and tetrahedrally close-packed (TCP) regions reminiscent of Mn-rich Mn-Si phases. The nearly complete spatial segregation of Mn-Si (intermetallic) and Mn-C (carbide) interactions in these structures can be understood from the differing geometrical requirements of C and Si. Rather than macroscopically separating into distinct phases, though, the two bonding types are tightly interwoven, with most Mn atoms being on the interfaces. DFT chemical pressure analysis reveals a driving force stabilizing these interfaces: the major local pressures acting between the Mn atoms in the Mn-Si and Mn-C systems are of opposite signs. Joining the intermetallic and carbide domains together then provides substantial relief to these local pressures, an effect we term epitaxial stabilization.
机译:相互竞争的几何或粘合图案之间的挫折感经常被用来解释材料的结构和特性中的复杂现象。这个想法对于金属系统特别重要,在金属系统中,挫折感是金属玻璃设计的基础,是各种磁性现象的来源,也是存在包含数千个原子的巨型晶胞的金属间化合物的基本原理。但是,与软质材料不同,可以在分子结构中合成编码冲突的软质材料,由于不相容组分的宏观分离容易,因此在金属状态下进行分阶段的挫折具有挑战性。在本文中,我们用两种新的金属间碳化物Mn_(16)SiC_4(mC_42)和Mn_(17)Si_2C_4(mP46)的合成和表征,说明了一种诱导不相容键基元共生的方法。与Mn-Si-C系统中的MnsSiC和Mn_8Si_2C相类似,这些化合物表现为Mn_3C的共生体和四面体密堆积(TCP)区域,让人联想到富锰的Mn-Si相。从C和Si的不同几何要求可以理解这些结构中Mn-Si(金属间)和Mn-C(碳化物)相互作用的几乎完全空间隔离。但是,这两种键合类型不是紧密地交织在一起,而是紧密地交织在一起,其中大多数Mn原子位于界面上。 DFT化学压力分析显示出稳定这些界面的驱动力:Mn-Si和Mn-C系统中Mn原子之间作用的主要局部压力具有相反的符号。然后将金属间和碳化物域连接在一起,可以大大缓解这些局部压力,我们称其为外延稳定化。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2016年第1期|248-256|共9页
  • 作者单位

    Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 57306, United States;

    Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 57306, United States;

    Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 57306, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:08:37

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号