首页> 外文期刊>Journal of the American Chemical Society >Effect of Interfacial Molecular Orientation on Power Conversion Efficiency of Perovskite Solar Cells
【24h】

Effect of Interfacial Molecular Orientation on Power Conversion Efficiency of Perovskite Solar Cells

机译:界面分子取向对钙钛矿太阳能电池功率转换效率的影响

获取原文
获取原文并翻译 | 示例
       

摘要

A wide variety of charge carrier dynamics, such as transport, separation, and extraction, occur at the interfaces of planar heterojunction solar cells. Such factors can affect the overall device performance. Therefore, understanding the buried interfacial molecular structure in various devices and the correlation between interfacial structure and function has become increasingly important. Current characterization techniques for thin films such as X-ray diffraction, cross section scanning electronmicroscopy, and UV-visible absorption spectroscopy are unable to provide the needed molecular structural information at buried interfaces. In this study, by controlling the structure of the hole transport layer (HTL) in a perovskite solar cell and applying a surface/interface-sensitive nonlinear vibrational spectroscopic technique (sum frequency generation vibrational spectroscopy (SFG)), we successfully probed the molecular structure at the buried interface and correlated its structural characteristics to solar cell performance. Here, an edge-on (normal to the interface) polythiophene (PT) interfacial molecular orientation at the buried perovskite (photoactive layer)/PT (HTL) interface showed more than two times the power conversion efficiency (PCE) of a lying down (tangential) PT interfacial orientation. The difference in interfacial molecular structure was achieved by altering the alkyl side chain length of the PT derivatives, where PT with a shorter alkyl side chain showed an edge-on interfacial orientation with a higher PCE than that of PT with a longer alkyl side chain. With similar band gap alignment and bulk structure within the PT layer, it is believed that the interfacial molecular structural variation (i.e., the orientation difference) of the various PT derivatives is the underlying cause of the difference in perovskite solar cell PCE.
机译:平面异质结太阳能电池的界面处发生各种电荷载流子动力学,例如传输,分离和提取。这些因素会影响整个设备的性能。因此,了解各种装置中埋入的界面分子结构以及界面结构与功能之间的相关性变得越来越重要。诸如X射线衍射,横截面扫描电子显微镜和UV-可见吸收光谱等薄膜的当前表征技术无法在掩埋界面处提供所需的分子结构信息。在这项研究中,通过控制钙钛矿太阳能电池中空穴传输层(HTL)的结构并应用表面/界面敏感的非线性振动光谱技术(总频率产生振动光谱(SFG)),我们成功地探测了分子结构在埋藏界面处,并将其结构特征与太阳能电池性能相关联。在此,在埋藏的钙钛矿(光敏层)/ PT(HTL)界面处的边缘(垂直于界面)聚噻吩(PT)界面分子取向显示了平躺的功率转换效率(PCE)的两倍以上(切线)PT界面方向。界面分子结构的差异是通过改变PT衍生物的烷基侧链长度来实现的,其中具有较短烷基侧链的PT的边沿界面取向具有较高的PCE,而具有较长烷基侧链的PT则具有。认为在PT层内具有相似的带隙取向和本体结构,各种PT衍生物的界面分子结构变化(即,取向差异)是钙钛矿太阳能电池PCE差异的根本原因。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2017年第9期|3378-3386|共9页
  • 作者单位

    Department of Chemistry;

    Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States;

    CAS Key laboratory of Standardization and Measurement for Nanotechnology, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China;

    Department of Chemistry;

    Department of Chemistry;

    Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States;

    Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States;

    Department of Chemistry;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:07:56

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号