首页> 外文期刊>Journal of the American Chemical Society >Energy Landscape in Supramolecular Coassembly of Platinum(Ⅱ) Complexes and Polymers: Morphological Diversity, Transformation, and Dilution Stability of Nanostructures
【24h】

Energy Landscape in Supramolecular Coassembly of Platinum(Ⅱ) Complexes and Polymers: Morphological Diversity, Transformation, and Dilution Stability of Nanostructures

机译:铂(Ⅱ)配合物和聚合物的超分子组装中的能量景观:纳米结构的形态多样性,转换和稀释稳定性。

获取原文
获取原文并翻译 | 示例
           

摘要

Establishment of energy landscape has emerged as an efficient pathway for improved understanding and manipulation of both thermodynamic and kinetic behaviors of complicated supramolecular systems. Herein, we report the establishment of energy landscapes of supramolecular coassembly of platinum(II) complexes and polymers, as well as the fabrication of nanostructures with enhanced complexity and intriguing properties from the coassembly systems. In the energy landscape, coassembly at room temperature has been found to only allow the longitudinal growth of platinum(II) complexes and block copolymers into core–shell nanofibers that are the kinetically trapped products. Thermal annealing can switch on the transverse growth of platinum(II) complexes and block copolymers to produce core–shell nanobelts that are the thermodynamically stable nanostructures. The extents of the transverse growth are found to increase with thermal annealing temperatures, leading to nanobelts with larger widths. Besides, rapid quenching of a hot coassembly mixture to room temperature can capture intermediate nanobelt-block -nanofiber nanostructures that are metastable and capable of converting to nanobelts upon further incubation at room temperature. Moreover, sonication treatment has been found to couple with the energy landscape of the coassembly system and open a unique energy-driven pathway to activate the kinetically forbidden nanofiber-to-nanobelt morphological transformation. Furthermore, based on the established energy landscapes, nanosphere-block -nanobelt nanostructures with distinct segmented architectures have been fabricated by thermal annealing of the ternary mixture of platinum(II) complexes, block copolymers, and polymer brushes in a one-pot and single-step procedure. Finally, the nanobelts and nanosphere-block -nanobelt nanostructures are found to possess intriguing morphological stability against acid and dilution, exhibiting characteristics that are important for promising biomedical applications.
机译:建立能源格局已成为改善对复杂的超分子系统的热力学和动力学行为的理解和操纵的有效途径。在这里,我们报告了铂(II)配合物和聚合物的超分子共组装的能量图的建立,以及从共组装系统制造具有增强的复杂性和耐人寻味的性能的纳米结构。在能源领域,已发现在室温下进行共组装只能使铂(II)配合物和嵌段共聚物纵向生长为动态捕获产物的核壳纳米纤维。热退火可以打开铂(II)配合物和嵌段共聚物的横向生长,以生产核壳纳米带,它们是热力学稳定的纳米结构。发现横向生长的程度随着热退火温度的增加而增加,从而导致纳米带的宽度更大。此外,将热的共组装混合物快速淬灭至室温可以捕获中间的纳米带-嵌段-纳米纤维纳米结构,其是亚稳定的并且在室温下进一步温育时能够转变成纳米带。此外,已经发现超声处理与共装系统的能量分布相结合,并开辟了独特的能量驱动途径,以激活动力学上禁止的纳米纤维向纳米颗粒的形态转化。此外,基于已建立的能量分布图,通过在一锅中对铂​​(II)配合物,嵌段共聚物和聚合物刷的三元混合物进行热退火,制得了具有独特分段结构的纳米球-嵌段-纳米颗粒纳米结构。和单步过程。最后,发现纳米带和纳米球-嵌段-纳诺贝特纳米结构具有耐酸和稀释的吸引人的形态稳定性,表现出对于有前途的生物医学应用重要的特性。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2018年第30期|9594-9605|共12页
  • 作者单位

    Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China;

    Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China;

    Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China;

    Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong)) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号