首页> 外文期刊>Journal of testing and evaluation >Studying the Statistics of Natural X-ray Pictures
【24h】

Studying the Statistics of Natural X-ray Pictures

机译:研究自然X射线照片的统计信息

获取原文
获取原文并翻译 | 示例

摘要

In this article, we have studied and analyzed the statistics of both pristine and distorted bandpass X-ray images. In the past, we have shown that the statistics of natural, bandpass-filtered visible light (VL) pictures, commonly expressed by natural scene statistic (NSS) models, can be used to create remarkably powerful, perceptually relevant predictors of perceptual picture quality. We find that similar models can be developed that apply quite well to X-ray image data. We have also studied the potential of applying these statistical X-ray NSS models to the design of algorithms for automatic image quality prediction of X-ray images, such as might occur in security, medicine, and material inspection applications. As a demonstration of the discrimination power of these models, we devised an application of NSS models to an image modality classification task, whereby VL, X-ray, infrared, and millimeter-wave images can be effectively and automatically distinguished. Our study is conducted on a dataset of X-ray images made available by the National Institute of Standards and Technology.
机译:在本文中,我们研究并分析了原始和扭曲的带通X射线图像的统计数据。过去,我们已经证明,通常由自然场景统计量(NSS)模型表达的自然带通滤波可见光(VL)图片的统计信息可用于创建感知图片质量的功能强大,在感知方面相关的预测指标。我们发现可以开发出适用于X射线图像数据的相似模型。我们还研究了将这些统计X射线NSS模型应用于设计X射线图像自动图像质量预测算法的潜力,例如在安全性,医学和材料检查应用中可能发生的情况。为了证明这些模型的识别能力,我们设计了将NSS模型应用于图像模态分类任务的方法,从而可以有效,自动地区分VL,X射线,红外和毫米波图像。我们的研究是在美国国家标准技术研究院提供的X射线图像数据集上进行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号