首页> 外文期刊>Journal of testing and evaluation >Vibration Testing by Non-Gaussian Random Excitations with Specified Kurtosis. Part Ⅱ: Numerical and Experimental Results
【24h】

Vibration Testing by Non-Gaussian Random Excitations with Specified Kurtosis. Part Ⅱ: Numerical and Experimental Results

机译:非高斯随机激励与指定峰度的振动测试。第二部分:数值和实验结果

获取原文
获取原文并翻译 | 示例

摘要

This paper is a follow-up to a preceding paper (Part Ⅰ) in which two methods of non-Gaussian random vibration testing with adjustable kurtosis were introduced and motivation for kurtosis control as a way of increasing or decreasing the excitation crest factor was discussed. The current paper (Part Ⅱ) adds numerical examples of automobile vibration simulation and experimental results fora kurtosis upgrade implemented in the same form of closed-loop control as in industrial shaker controllers. It was observed in experiments that the dynamic range of a kurtosis controller based on the polynomial transformation method was reduced and the handling of resonances worsened notably. These problems also arise with the sigma clipping technique of crest factor limiting. However, there are no such difficulties with the non-Gaussian method of phase manipulation in the inverse fast Fourier transform (IFFT). When using this method, the signal-to-noise ratio, the controller's dynamic range, and the stabilization time are as good as in standard Gaussian random testing. Evaluation of the performance of the proposed phase selection algorithm has shown that for increased kurtosis it ensures realistic variability of high peaks in terms of their amplitudes and positions, as well as the number of severe peaks per data block. Because of the analytical solution advantage, both methods, the polynomial transformation and the phase selection, meet time restrictions critical for the operation of shaker testing controllers.
机译:本文是对前一篇论文(第一部分)的后续,其中介绍了两种可调节峰度的非高斯随机振动测试方法,并讨论了峰度控制的动机,以增加或减少激励波峰因数。本论文(第二部分)增加了汽车振动模拟的数值示例,并以与工业振动台控制器相同的闭环控制形式实施了峰度提升的实验结果。在实验中观察到,基于多项式变换方法的峰度控制器的动态范围减小,并且谐振的处理显着恶化。峰值因数限制的sigma削波技术也会出现这些问题。但是,在逆快速傅立叶变换(IFFT)中使用非高斯相位控制方法没有这种困难。使用这种方法时,信噪比,控制器的动态范围和稳定时间与标准高斯随机测试中的一样好。对所提出的相位选择算法的性能进行的评估表明,对于峰度增加,它可以确保高峰的振幅和位置以及每个数据块中的严重峰数的实际变化。由于解析解决方案的优势,多项式变换和相位选择这两种方法都满足了对振动台测试控制器的运行至关重要的时间限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号