首页> 外文期刊>Journal of testing and evaluation >Fully Automated Active Contour Model Based Approach for Segmentation of Common Carotid Artery Using Ultrasound Images
【24h】

Fully Automated Active Contour Model Based Approach for Segmentation of Common Carotid Artery Using Ultrasound Images

机译:基于全自动主动轮廓模型的超声图像分割颈总动脉的方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we have proposed an automated approach to segment common carotid artery from longitudinal carotid B-mode ultrasound images and calculate the carotid intima media thickness. The proposed approach extracts the contours in the ultrasound images using gradient vector flow snakes with an improved snake initialization process. The seed points for this improved snake initialization process are extracted using selected edges returned by the candidate line-selection algorithm. Intima media thickness is calculated from the extracted contours. The proposed approach is tested and clinically validated on a data set of 100 longitudinal ultrasound images of the carotid artery. There is no significant difference between intima media thickness measurements obtained using the proposed approach and the manual measurements. The intra-observer error of 0.088, a coefficient of variation of 12.99 %, Bland-Altman plots with small differences between experts (0.01 and 0.03 for Experfl and Expert2, respectively) and figure of merit of 98.5 % are obtained. The proposed approach can be used successfully for carotid intima media thickness measurement, which can further be used for risk estimation of cardiovascular diseases and ischemic stroke. The proposed approach makes the segmentation process automated and yet reduces the risk of subjectivity and operator variability for intima media thickness measurement.
机译:在本文中,我们提出了一种从纵向颈动脉B型超声图像分割颈总动脉并计算颈内膜中膜厚度的自动方法。所提出的方法使用具有改进的蛇初始化过程的梯度矢量流蛇来提取超声图像中的轮廓。使用候选行选择算法返回的选定边来提取此改进的蛇初始化过程的种子点。根据提取的轮廓计算内膜中层厚度。该方法在颈动脉的100张纵向超声图像的数据集上进行了测试和临床验证。使用建议的方法获得的内膜中层厚度测量值与手动测量值之间没有显着差异。观察者内部误差为0.088,变异系数为12.99%,专家之间的差异很小(分别为Experfl和Expert2的0.01和0.03),Bland-Altman图和品质因数为98.5%。所提出的方法可以成功地用于颈动脉内膜中层厚度的测量,可以进一步用于心血管疾病和缺血性中风的风险评估。所提出的方法使分割过程自动化,并且降低了内膜中层厚度测量的主观性和操作者变异性的风险。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号