首页> 外文期刊>Journal of testing and evaluation >Monitoring on the Auto-Analyzer System in-Statistical-Control for SO_2 in Atmosphere With Top-Down Uncertainty Evaluation
【24h】

Monitoring on the Auto-Analyzer System in-Statistical-Control for SO_2 in Atmosphere With Top-Down Uncertainty Evaluation

机译:自上而下的不确定性评估对大气中SO_2的自动分析仪系统的统计控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the top-down approach (CNAS-GL34: Guidance for Measurement Uncertainty Evaluation Based on Quality Control Data in Environmental Testing, China National Accreditation Service for Conformity Assessment, Beijing, China, 2013) for A type evaluation of empirical model can be applied to qualify the S0_2 by using analyzer and primary test method (PTM) (GB/T 27408: Quality Control in Laboratories-Evaluating Validity of Non-Standard Test Method-Practice for a Linear Relationship, Standardization Administration of the People's Republic of China, Beijing, China, 2010), whereupon a large number of real-time data, in multi-sites at different levels, were accumulated under site precision (s_(R')) in-statistical-control condition (GB/T 27411: Routine Methods for Evaluation and Expression of Measurement Uncertainty in Testing Laboratory, Standardization Administration of the People's Republic of China, Beijing, China, 2012). The data-transformed-system under investigation cannot be considered suspect as none of the Anderson Darling (AD) statistics were failed in acceptance at the 95 % confidence level for the hypothesis of normality and independence. Our survey was originated from the fog-haze over a period of time for S0_2 in air, with its boundary of 100 x 10~(-9)~400 x 10~(-9.) Finally, the top-down approach, based on closeness sum of squares (CSS), gave the reliable and valid evaluation as the expanded uncertainty, U = 8.5 μg/m~3, which maximized the combination of the effects on various variances, refrained from the complicated relativity by bottom-up for uncertainty evaluation.
机译:本文采用自上而下的方法(ANAS)对经验模型进行类型评估(CNAS-GL34:基于质量控制数据的环境测试中的测量不确定度评估指南,中国合格评定国家认可服务局,北京,2013)。通过分析仪和主要测试方法(PTM)进行S0_2的鉴定(GB / T 27408:实验室质量控制-非标准测试方法的有效性评估-线性关系的实践,中华人民共和国标准化管理委员会,北京,中国,2010年),然后在统计控制条件下(GB / T 27411)在站点精度(s_(R'))下积累了不同级别的多站点中的大量实时数据:中华人民共和国标准化管理局测试实验室中测量不确定度的评估和表示的常规方法,北京,中国,2012年。由于正态性和独立性假设的安德森·达林(AD)统计数据在95%的置信度上都没有被接受,因此不能认为正在研究的数据转换系统是可疑的。我们的调查源自一段时间内空气中S0_2的雾霾,其边界为100 x 10〜(-9)〜400 x 10〜(-9。)。最后,基于自上而下的方法平方和(CSS)上的误差,给出了可靠而有效的评估,因为扩展不确定度U = 8.5μg/ m〜3,从而最大程度地提高了对各种方差的影响的组合,避免了自下而上的复杂相对性不确定性评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号