首页> 外文期刊>Journal of testing and evaluation >Tele Alert System for Epileptic Seizure on a Study of EEG Signal Classification by GBE-NLSVM through ICA Preprocessed and AR Extracted Signal in a BCI System
【24h】

Tele Alert System for Epileptic Seizure on a Study of EEG Signal Classification by GBE-NLSVM through ICA Preprocessed and AR Extracted Signal in a BCI System

机译:基于BCI系统中的ICA预处理和AR提取信号的GBE-NLSVM对脑电信号分类研究的癫痫发作远程预警系统

获取原文
获取原文并翻译 | 示例

摘要

Brain computer interface is an action of translating the brain signal into a command for activating artificial object such as limb. BCI is the collaboration of biomedical, electrical, computer, and mechanical engineering. An action potential is created in the form of electrical signal in the brain for every action of a human being, either physical or mental. The patient himself suffering from epileptic seizure poses danger severely during the absence of continuous monitoring. Taking care of epileptic patients from remote locations has become essential since the patient loses his whole control during epileptic seizure. This paper presented an epileptic tele alert system (ETAS) for a patient being monitored from out of the hospital premises. The brain signals tapped using a noninvasive electro encephalographie (EEG) electrode was given to independent component analysis (ICA) to preprocess the tapped signal. The auto regressive method (AR) was employed to extract the feature from training the brain signal for the normal and abnormal condition of the patient. The support vector machine technique named Gaussian basis function non-linear support vector machine (GBF-NLSVM) was used to classify the signal that is a vulnerable point in the cause of the epileptic seizure with respect to brain action potential for various statuses of activities. The frequency beyond the beta level was identified and the signal was transformed as a command for activating handheld devices using microcontroller via global system for mobile communication (GSM). The MATLAB, Simulink software having built in functions for studying the brain signal was used to analyze the brain signal. The proposed model discussed the signal tapping, feature extraction, classification, and activation of mobile phone using microcontroller. The proposed system incorporating ICA, AR, and GBF- NLSVM was compared with other techniques for identifying epileptic seizure and ensured that the system provided about 97 % of accuracy over the other standalone technique.
机译:脑计算机接口是将脑信号转换为用于激活人造物体(例如肢体)的命令的动作。 BCI是生物医学,电气,计算机和机械工程领域的合作。大脑中以电信号的形式产生的动作电位可用于人类的任何身体或精神活动。在没有连续监测的情况下,患有癫痫发作的患者本人会构成严重危险。由于在癫痫发作期间患者失去了全部控制权,因此从远程位置照顾癫痫患者变得至关重要。本文介绍了一种癫痫远程警报系统(ETAS),用于从医院场所外监视患者。使用无创性脑电图(EEG)电极敲击的脑信号经过独立成分分析(ICA)进行预处理。自回归方法(AR)用于从训练患者正常和异常情况的脑信号中提取特征。使用支持向量机技术(称为高斯基函数非线性支持向量机(GBF-NLSVM))对信号进行分类,这些信号是针对各种活动状态的大脑动作电位而引起的癫痫性发作原因中的脆弱点。确定了超出beta级别的频率,并将信号转换为通过全球移动通信系统(GSM)使用微控制器激活手持设备的命令。具有内置功能的用于研究脑信号的MATLAB Simulink软件用于分析脑信号。所提出的模型讨论了使用微控制器对手机进行信号窃听,特征提取,分类和激活。拟议的包含ICA,AR和GBF-NLSVM的系统与其他用于识别癫痫发作的技术进行了比较,并确保该系统提供的准确性比其他独立技术高约97%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号