首页> 外文期刊>Journal of symbolic computation >Bivariate Kolchin-type dimension polynomials of non-reflexive prime difference-differential ideals. The case of one translation
【24h】

Bivariate Kolchin-type dimension polynomials of non-reflexive prime difference-differential ideals. The case of one translation

机译:非反射主要差分差分理想的双变型Kolchin型尺寸多项式。一个翻译的情况

获取原文
获取原文并翻译 | 示例

摘要

We use the method of characteristic sets with respect to two term orderings to prove the existence and obtain a method of computation of a bivariate Kolchin-type dimension polynomial associated with a non-reflexive difference-differential ideal in the algebra of difference-differential polynomials with several basic derivations and one translation. In particular, we obtain a new proof and a method of computation of the dimension polynomial of a non-reflexive prime difference ideal in the algebra of difference polynomials over an ordinary difference field. As a consequence, it is shown that the reflexive closure of a prime difference polynomial ideal is the inverse image of this ideal under a power of the basic translation. We also discuss applications of our results to the analysis of systems of algebraic difference differential equations. (C) 2019 Elsevier Ltd. All rights reserved.
机译:我们使用关于两个术语排序的特征集的方法来证明存在并获得与差分 - 差分多项式代数的非反射差分差分理想相关联的二偏见科隆型尺寸多项式的计算方法几个基本派生和一个翻译。特别地,我们获得了一种新的证据和计算常变多项式代数在普通差异场上的差异多项式的代数中的尺寸多项式的计算方法。结果,示出了主要差异多项式理想的反射闭合是在基本平移的功率下这种理想的逆图像。我们还讨论了我们的结果应用于分析代数差分差分方程的系统。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号