首页> 外文期刊>Journal of symbolic computation >Algorithms for computing greatest common divisors of parametric multivariate polynomials
【24h】

Algorithms for computing greatest common divisors of parametric multivariate polynomials

机译:计算参数多变量多项式的最大常见除数的算法

获取原文
获取原文并翻译 | 示例

摘要

Two new efficient algorithms for computing greatest common divisors (gcds) of parametric multivariate polynomials over k[U][X] are presented. The key idea of the first algorithm is that the gcd of two non-parametric multivariate polynomials can be obtained by dividing their product by the generator of the intersection of two principal ideals generated by the polynomials. The second algorithm is based on another simple insight that the gcd can be extracted using the generator of the ideal quotient of a polynomial with respect to the second polynomial. Since the ideal intersection and ideal quotient in these cases are also principal ideals, their generators can be obtained by computing minimal Grobner bases of the ideal intersection and ideal quotient, respectively. To avoid introducing new variables which can adversely affect the efficiency, minimal Grobner bases computations are performed on modules. Both of these constructions generalize to the parametric case as shown in the paper. Comprehensive Grobner system constructions are used for the parametric ideal intersection and ideal quotient using the Kapur-Sun-Wang's algorithm. It is proved that whether in a minimal comprehensive Grobner system of a parametric ideal intersection or in that of a parametric ideal quotient, each branch of the specializations corresponds to a principal parametric ideal with a single generator. Using this generator, the parametric gcd of that branch is obtained by division. For the case of more than two parametric polynomials, we can use the above two algorithms to compute gcds recursively, and get an extended algorithm by generalizing the idea of the second algorithm. Algorithms do not suffer from having to apply expensive steps such as ensuring whether parametric polynomials are primitive w.r.t. the main variable as used in both the algorithms proposed by Nagasaka (ISSAC, 2017). The resulting algorithms are not only conceptually simple to understand but are more efficient in practice. The proposed algorithms and both of Nagasaka's algorithms have been implemented in Singular, and their performance is compared on a number of examples. (C) 2019 Elsevier Ltd. All rights reserved.
机译:呈现了两个用于计算参数多变量多项式的最大常见分配的新高效算法(GCD)在k [u] [x]上。第一算法的关键思想是通过将它们的产品除以多项式产生的两个主要理想的通知来获得两个非参数多变量多项式的GCD。第二算法基于另一个简单的见解,即可以使用多项式相对于第二多项式的理想商的理想商的发电机提取GCD。由于这些情况下的理想交叉和理想商也是主要的理想,因此它们的发电机可以通过计算理想交叉口和理想商的最小Grobner基础。为避免引入可能对效率产生不利影响的新变量,在模块上执行最小的Grobner基础计算。这两个结构都概括为参数盒,如纸张所示。综合Grobner系统结构用于使用Kapur-Sun-Wang算法的参数理想的交叉点和理想商。事实证明,是否在参数化理想交叉路口的最小综合Grebner系统或参数的理想商中,所以专业化的每个分支对应于单个发电机的主要参数。使用此生成器,该分支的参数GCD是通过划分获得的。对于两个以上的参数多项式的情况,我们可以使用上述两种算法递归地计算GCD,并通过推广第二算法的思想来获得扩展算法。算法不必遭受昂贵的步骤,例如确保参数多项式是否是原始的w.r.t。长崎提出的算法中使用的主要变量(Issac,2017)。由此产生的算法不仅概念性地易于理解,而且在实践中更有效。所提出的算法和长崎的算法都以奇异实现,并在许多例子上比较了它们的性能。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号