首页> 外文期刊>urnal of Symbolic Computation >Root isolation of zero-dimensional polynomial systems with linear univariate representation
【24h】

Root isolation of zero-dimensional polynomial systems with linear univariate representation

机译:具有线性单变量表示的零维多项式系统的根隔离

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a linear univariate representation for the roots of a zero-dimensional polynomial equation system is presented, where the complex roots of the polynomial system are represented as linear combinations of the roots of several univariate polynomial equations. An algorithm is proposed to compute such a representation for a given zero-dimensional polynomial equation system based on Grbbner basis computation. The main advantage of this representation is that the precision of the roots of the system can be easily controlled. In fact, based on the linear univariate representation, we can give the exact precisions needed for isolating the roots of the univariate equations in order to obtain roots of the polynomial system with a given precision. As a consequence, a root isolating algorithm for a zero-dimensional polynomial equation system can be easily derived from its linear univariate representation.
机译:本文提出了零维多项式方程系统根的线性单变量表示,其中多项式系统的复数根表示为几个单变量多项式方程根的线性组合。提出了一种基于Grbbner基计算的给定零维多项式方程组的表示形式的算法。这种表示的主要优点是可以容易地控制系统根的精度。实际上,基于线性单变量表示,我们可以给出隔离单变量方程的根所需的精确精度,以便获得具有给定精度的多项式系统的根。结果,可以很容易地从其线性单变量表示中得出零维多项式方程组的根隔离算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号