首页> 外文期刊>Journal of symbolic computation >Triangular χ-basis decompositions and derandomization of linear algebra algorithms over K[χ]
【24h】

Triangular χ-basis decompositions and derandomization of linear algebra algorithms over K[χ]

机译:K上的线性代数算法的三角χ基分解和去随机化

获取原文
获取原文并翻译 | 示例

摘要

Deterministic algorithms are given for some computational problems that take as input a nonsingular polynomial matrix A over K[χ], K an abstract field, including solving a linear system involving A and computing a row reduced form of A The fastest known algorithms for linear system solving based on the technique of high-order lifting by Storjohann (2003), and for row reduction based on the fast minimal approximant basis computation algorithm by Giorgi et al. (2003), use randomization to find either a linear or small degree polynomial that is relatively prime to det A. We derandomize these algorithms by first computing a factorization of A = UH, with x not dividing det U and x — 1 not dividing detH. A partial linearization technique, that is applicable also to other problems, is developed to transform a system involving H, which may have some columns of large degrees, to an equivalent system that has degrees reduced to that of the average column degree.
机译:针对某些计算问题,给出了确定性算法,将非奇异多项式矩阵A输入到K [χ]上,将抽象字段K作为输入,包括求解涉及A的线性系统并计算A的行归约形式线性系统最快的已知算法基于Storjohann(2003)的高阶提升技术进行求解,以及基于Giorgi等人的基于快速最小近似基计算算法的行减少。 (2003年),使用随机化找到相对于det A相对质数的线性或小次数多项式。我们首先通过计算A = UH的因式分解来对这些算法进行随机化处理,其中x不除以det U,x_1不除以detH 。开发了一种部分线性化技术,该技术也可应用于其他问题,以将涉及H的系统(可能具有某些大角度的列)转换为等效系统,该系统的度降低为平均列度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号