首页> 外文期刊>Journal of symbolic computation >Deformation of roots of polynomials via fractional derivatives
【24h】

Deformation of roots of polynomials via fractional derivatives

机译:通过分数导数对多项式的根进行变形

获取原文
获取原文并翻译 | 示例

摘要

We first recall the main features of Fractional calculus. In the expression of fractional derivatives of a real polynomial /(x), we view the order of differentiation q as a new indeterminate; then we define a new bivariate polynomial P_f(x,q). For 0≤ q ≤1, P_f(x,q) defines a homotopy between the polynomials /(x) and xf'(x). Iterating this construction, we associate to f(x) a plane spline curve, called the stem of f. Stems of classic random polynomials exhibits intriguing patterns; moreover in the complex plane P_f(x, q) creates an unexpected correspondence between the complex roots and the critical points of f(x). We propose 3 conjectures to describe and explain these phenomena. Illustrations are provided relying on the Computer algebra system Maple.
机译:我们首先回顾分数演算的主要特征。在实多项式/(x)的分数导数的表达式中,我们将微分q的阶视为新的不确定数;然后定义一个新的二元多项式P_f(x,q)。对于0≤q≤1,P_f(x,q)定义多项式/(x)和xf'(x)之间的同伦。重复此构造,我们将称为f的茎的平面样条曲线与f(x)关联。经典随机多项式的词干表现出有趣的模式。此外,在复平面上P_f(x,q)在复数根与f(x)的临界点之间产生了意外的对应关系。我们提出3个猜想来描述和解释这些现象。提供了依赖于计算机代数系统Maple的插图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号