首页> 外文期刊>urnal of Symbolic Computation >An efficient algorithm for computing a comprehensive Groebner system of a parametric polynomial system
【24h】

An efficient algorithm for computing a comprehensive Groebner system of a parametric polynomial system

机译:用于计算参数多项式系统的全面Groebner系统的有效算法

获取原文
获取原文并翻译 | 示例

摘要

A new efficient algorithm for computing a comprehensive Groebner system of a parametric polynomial ideal over k [U]|X| is presented. This algorithm generates fewer branches (segments) compared to previously proposed algorithms including Suzuki and Sato's algorithm as well as Nabeshima's algorithm. As a result, the algorithm is able to compute comprehensive Groebner systems of parametric polynomial ideals arising from applications which have been beyond the reach of other well known algorithms. The starting point of the new algorithm is Weispfenning's algorithm with a key insight by Suzuki and Sato who proposed computing first a Groebner basis of an ideal over kU,X before performing any branches based on parametric constraints. The proposed algorithm exploits the result that along any branch in a tree corresponding to a comprehensive Groebner system, it is only necessary to consider one polynomial for each nondivisible leading power product in k(U)[X] with the condition that the product of their leading coefficients is not 0; other branches correspond to the cases where this product is 0. In addition, for dealing with a disequality parametric constraint, a probabilistic check is employed for radical membership test of an ideal of parametric constraints. This is in contrast to a general expensive check based on Rabinovitch's trick using a new variable as in Nabeshima's algorithm. The proposed algorithm has been implemented in Magma and Singular, and experimented with a number of examples from different applications. Its performance (the number of branches and execution time) has been compared with several other existing algorithms. A number of heuristics and efficient checks have been incorporated into the Magma implementation, especially in the case when the ideal of parametric constraints is 0-dimensional. The algorithm has been successfully used to solve a special case of the famous P3P problem from computer vision.
机译:一种新的高效算法,可以计算k [U] | X |上参数多项式理想的综合Groebner系统被表达。与先前提出的算法(包括Suzuki和Sato的算法以及Nabeshima的算法)相比,该算法产生的分支(段)更少。结果,该算法能够计算出由应用程序产生的参数多项式理想的综合Groebner系统,而这些应用程序是其他众所周知的算法无法实现的。新算法的起点是Weispfenning的算法,该算法具有Suzuki和Sato的重要见识,他们提出先在kU,X上计算理想值的Groebner基础,然后再执行基于参数约束的任何分支。所提出的算法利用了这样的结果:沿着树的任何分支(对应于一个完整的Groebner系统),仅需考虑k(U)[X]中每个不可分割的前导乘积的一个多项式,条件是它们的乘积前导系数不为0;其他分支对应于该乘积为0的情况。此外,为了处理不等式参数约束,采用概率检查对参数约束的理想值进行基本隶属度检验。这与基于Nabinshima算法的,使用新变量的Rabinovitch技巧进行的一般昂贵检查相反。所提出的算法已经在岩浆和奇异中实现,并用来自不同应用的大量示例进行了实验。它的性能(分支数和执行时间)已与其他几种现有算法进行了比较。 Magma实现中已合并了许多启发式方法和有效的检查方法,特别是在参数约束的理想值为0维的情况下。该算法已成功用于解决计算机视觉中著名的P3P问题的特殊情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号