首页> 外文期刊>Journal of supercomputing >An efficient parallel indexing structure for multi-dimensional big data using spark
【24h】

An efficient parallel indexing structure for multi-dimensional big data using spark

机译:使用火花的多维大数据有效的平行索引结构

获取原文
获取原文并翻译 | 示例

摘要

With the increasing daily production of data in recent years, indexing, storing and retrieving huge amounts of data have become a common problem, especially for multi-dimensional big data. Although R-tree has proved to be efficient for indexing multi-dimensional big data, the R-tree suffers from the curse of dimensionality problem. Many researchers continue to use the R-tree in their studies as it is the most famous tree-like structure for indexing multi-dimensional data. However, with increasing numbers of dimensions in multi-dimensional data the performance of R-Tree will decrease. This paper proposes a new indexing structure called Parallel Indexing System Structure based on Spark (ParISSS), which is an efficient system for indexing multi-dimensional big data, to overcome these problems. ParISSS introduces six types of computing nodes, the reception-node is used to insert and index data, the normal-node is used to store indexed data, the resolution-node is used to distribute a reception-index to a normal-node, the representative-node is used to receive queries from the user, and the reply-node and check-node are used to send the results to the user. We also introduced BR*-tree structure to improve the storing and searching processes. We present an extensive experimental evaluation of our system, comparing several indexing systems. The experimental results show that ParISSS outperforms other indexing systems.
机译:随着近年来的日常生产日益增长,索引,存储和检索大量数据已成为一个常见问题,特别是对于多维大数据。虽然R树已经证明是索引多维大数据的效率,但R树遭受了维度问题的诅咒。许多研究人员继续在学习中使用R树,因为它是用于索引多维数据的最着名的树状结构。然而,随着多维数据中的尺寸越来越多,R树的性能将减小。本文提出了一种新的索引结构,称为基于火花(Parisss)的并行索引系统结构的索引结构,这是一种用于索引多维大数据的有效系统,以克服这些问题。 Parisss引入了六种类型的计算节点,接收节点用于插入和索引数据,使用常规节点存储索引数据,分辨率节点用于将接收索引分发到普通节点,即代表节点用于接收来自用户的查询,并且回复节点和校验节点用于将结果发送给用户。我们还介绍了BR * -Tree结构,以改善存储和搜索过程。我们对我们的系统进行了广泛的实验评估,比较了几种索引系统。实验结果表明,Parisss优于其他分度系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号