首页> 外文期刊>Journal of supercomputing >An intelligent internet of things-based secure healthcare framework using blockchain technology with an optimal deep learning model
【24h】

An intelligent internet of things-based secure healthcare framework using blockchain technology with an optimal deep learning model

机译:基于事物的智能互联网安全医疗保健框架,使用BlockChain技术具有最佳的深度学习模型

获取原文
获取原文并翻译 | 示例

摘要

Today, the internet of things (IoT) is becoming more common and finds applications in several domains, especially in the healthcare sector. Due to the rising demands of IoT, a massive quantity of sensing data gets generated from diverse sensing devices. Artificial intelligence (AI) techniques are vital for providing a scalable and precise analysis of data in real time. But the design and development of a useful big data analysis technique face a few challenges, like centralized architecture, security, and privacy, resource constraints, and the lack of adequate training data. On the other hand, the rising blockchain technology offers a decentralized architecture. It enables secure sharing of data and resources to the different nodes of the IoT network and is promoted for removing centralized control and resolving the problems of AI. This study develops an optimal deep-learning-based secure blockchain (ODLSB) enabled intelligent IoT and healthcare diagnosis model. The proposed model involves three major processes: secure transaction, hash value encryption, and medical diagnosis. The ODLSB technique comprises the orthogonal particle swarm optimization (OPSO) algorithm for the secret sharing of medical images. In addition, the hash value encryption process takes place using neighborhood indexing sequence (NIS) algorithm. At last, the optimal deep neural network (ODNN) is applied as a classification model to diagnose the diseases. The utilization of OPSO algorithm for secret sharing and optimal parameter tuning process shows the novelty of the work. We carried out detailed experiments to validate the outcome of the proposed method, and several aspects of the results are considered. At the time of the diagnosis process, the OPSO-DNN model has yielded superior results, with the highest sensitivity (92.75%), specificity (91.42%), and accuracy (93.68%).
机译:今天,物联网(物联网)变得越来越普遍,在若干域中发现应用,特别是在医疗保健部门。由于IOT的需求上升,从各种传感设备产生了大量的感测数据。人工智能(AI)技术对于实时提供对数据的可扩展和精确分析至关重要。但是,有用的大数据分析技术的设计和开发面临着一些挑战,如集中式架构,安全和隐私,资源限制以及缺乏足够的培训数据。另一方面,崛起的区块链技术提供了分散的架构。它可以使数据和资源安全地分享到物联网网络的不同节点,并促进用于去除集中控制并解决AI的问题。本研究开发了最佳的基于深度学习的安全区块链(ODLSB)启用了智能物联网和医疗诊断模型。拟议的模型涉及三个主要流程:安全交易,哈希值加密和医学诊断。 ODLSB技术包括用于医学图像的秘密共享的正交粒子群优化(OPSO)算法。此外,哈希值加密过程使用邻域索引序列(NIS)算法进行。最后,最佳深度神经网络(ODNN)被应用为分类模型以诊断疾病。用于秘密共享和最优参数调谐过程的OPO算法的利用显示了工作的新颖性。我们进行了详细的实验,以验证所提出的方法的结果,并考虑了结果的若干方面。在诊断过程中,OPSO-DNN模型产生了优异的效果,灵敏度最高(92.75%),特异性(91.42%)和准确性(93.68%)。

著录项

  • 来源
    《Journal of supercomputing》 |2021年第9期|9576-9596|共21页
  • 作者单位

    Vel Tech Rangaraj Dr Sagunthala R&D Inst Sci & Te Chennai Tamil Nadu India;

    SRM Inst Sci & Technol Dept Software Engn Chennai Tamil Nadu India;

    SRM Inst Sci & Technol Dept Comp Sci & Engn Chennai Tamil Nadu India;

    Annamacharya Inst Technol & Sci Dept CSE Rajampet Andhra Pradesh India;

    SRM Inst Sci & Technol Sch Comp Kattankulathur 603203 Tamil Nadu India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    IoT; Healthcare; Blockchain; Deep learning; Hashing; Encryption;

    机译:IOT;医疗保健;区间;深入学习;哈希;加密;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号