首页> 外文期刊>Journal of supercomputing >DIESEL: A novel deep learning-based tool for SpMV computations and solving sparse linear equation systems
【24h】

DIESEL: A novel deep learning-based tool for SpMV computations and solving sparse linear equation systems

机译:柴油:用于SPMV计算和求解稀疏线性方程系统的新型深度学习工具

获取原文
获取原文并翻译 | 示例

摘要

Sparse linear algebra is central to many areas of engineering, science, and business. The community has done considerable work on proposing new methods for sparse matrix-vector multiplication (SpMV) computations and iterative sparse solvers on graphical processing units (GPUs). Due to vast variations in matrix features, no single method performs well across all sparse matrices. A few tools on automatic prediction of best-performing SpMV kernels have emerged recently and require many more efforts to fully utilize their potential. The utilization of a GPU by the existing SpMV kernels is far from its full capacity. Moreover, the development and performance analysis of SpMV techniques on GPUs have not been studied in sufficient depth. This paper proposes DIESEL, a deep learning-based tool that predicts and executes the best performing SpMV kernel for a given matrix using a feature set carefully devised by us through rigorous empirical and mathematical instruments. The dataset comprises 1056 matrices from 26 different real-life application domains including computational fluid dynamics, materials, electromagnetics, economics, and more. We propose a range of new metrics and methods for performance analysis, visualization, and comparison of SpMV tools. DIESEL provides better performance with its accuracy 88.2%, workload accuracy 91.96%, and average relative loss 4.4%, compared to 85.9%, 85.31%, and 7.65% by the next best performing artificial intelligence (AI)-based SpMV tool. The extensive results and analyses presented in this paper provide several key insights into the performance of the SpMV tools and how these relate to the matrix datasets and the performance metrics, allowing the community to further improve and compare basic and AI-based SpMV tools in the future.
机译:稀疏的线性代数是许多工程,科学和业务领域的核心。该社区在图形处理单元(GPU)上提出了提出稀疏矩阵矢量乘法(SPMV)计算和迭代稀疏求解器的新方法。由于矩阵特征的巨大变体,在所有稀疏矩阵上没有单个方法都井井用力。最近出现了几种关于最佳性SPMV内核的自动预测的工具,并且需要更多努力充分利用其潜力。现有SPMV内核利用GPU远离其全部容量。此外,GPU上的SPMV技术的开发和性能分析尚未以足够的深度研究。本文提出了柴油,这是一种基于深度学习的工具,其使用通过严格的经验和数学仪器仔细设计的特征来预测和执行给定矩阵的最佳性SPMV内核。数据集包括来自26个不同现实寿命应用领域的1056个矩阵,包括计算流体动力学,材料,电磁,经济学等。我们提出了一系列新的度量和方法,用于SPMV工具的性能分析,可视化和比较。柴油提供了更好的性能,其精度为88.2%,工作量精度为91.96%,平均相对损失为4.4%,而下一个最佳性能的人工智能(AI)基础的SPMV工具为85.9%,85.31%和7.65%。本文中提出的广泛结果和分析提供了对SPMV工具的性能以及这些关联的若干关键见解以及这些数据集如何与矩阵数据集和性能指标相关,允许社区进一步改进和比较基于基于AI的SPMV工具未来。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号