首页> 外文期刊>Journal of supercomputing >Parallel computation of probabilistic skyline queries using MapReduce
【24h】

Parallel computation of probabilistic skyline queries using MapReduce

机译:MapReduce的Probesative Skyline查询的并行计算

获取原文
获取原文并翻译 | 示例

摘要

In recent years, numerous applications have been continuously generating large amounts of uncertain data. The advanced analysis queries such as skyline operators are essential topics to extract interesting objects from the vast uncertain dataset. Recently, the MapReduce system has been widely used in the area of big data analysis. Although the probabilistic skyline query is not decomposable, it does not make sense to implement the probabilistic skyline query in the MapReduce framework. This paper proposes an effective parallel method called parallel computation of probabilistic skyline query (PCPS) that can measure the probabilistic skyline set in one MapReduce computation pass. The proposed method takes into account the critical sections and detects data with a high probability of existence through a proposed smart sampling algorithm. PCPS implements a new approach to the fair allocation of input data. The experimental results indicate that our proposed approach can not only reduce the processing time of the probabilistic skyline queries, but also achieve fair precision with varying dimensionality degrees.
机译:近年来,许多应用程序一直不断地产生大量不确定数据。 SkyLine运算符等高级分析查询是从庞大的不确定数据集中提取有趣对象的重要主题。最近,MapReduce系统已广泛用于大数据分析领域。虽然概率的天际线查询不可分解,但在MapReduce框架中实现概率性天际线查询并没有意义。本文提出了一种有效的并行方法,称为PathabiListic Skyline查询(PCP)的并行计算,可以测量一个MapReduce计算通过中的概率性天际线。所提出的方法考虑了临界部分,并通过提出的智能采样算法检测具有高概率的数据。 PCP实现了一个新的输入数据分配的新方法。实验结果表明,我们所提出的方法不仅可以减少概率的天际线查询的处理时间,而且还可以实现不同的维度度的公平精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号