首页> 外文期刊>Journal of supercomputing >A new method of abnormal behavior detection using LSTM network with temporal attention mechanism
【24h】

A new method of abnormal behavior detection using LSTM network with temporal attention mechanism

机译:利用LSTM网络具有时间关注机制的一种新方法的异常行为检测方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose an accurate and effective method for detecting abnormal behavior. We consider the video as a series of frame sequences; in the training phase, our deep learning framework is used to extract appearance features and learn the relationship between historical features and current features in the normal video. In the testing phase, the predicted features that differ from the actual features are considered as abnormal. Our model is designed as a feature prediction framework with a new temporal attention mechanism. In the feature extraction stage, we transform a pre-trained Vgg16 network into a fully convolutional neural network and used the third pooling layer output as the appearance feature extraction to effectively capture static appearance features. Then, a new temporal attention mechanism is introduced to learn the contribution of different historical appearance features at the same position to the current features, thereby solving the problem of representing dynamic motion features. Finally, the LSTM network is used to decode the historical feature sequences with temporal attention to predict the features at the current moment. Those actual features that differ from the predicted features are considered as abnormal features. Using upsampling for the abnormal features locates abnormal behavior on the original frames. Experiments on two benchmark datasets demonstrate the competitive performance of our method with the state-of-the-art methods.
机译:在本文中,我们提出了一种准确有效的方法,用于检测异常行为。我们将视频视为一系列帧序列;在培训阶段,我们的深度学习框架用于提取外观特征,并在普通视频中学习历史特征与当前功能之间的关系。在测试阶段,与实际功能不同的预测特征被认为是异常的。我们的模型被设计为具有新的暂时注意机制的特征预测框架。在特征提取阶段,我们将预先训练的VGG16网络转换为完全卷积的神经网络,并使用第三个汇集层输出作为外观特征提取,以有效地捕获静态外观特征。然后,引入了一种新的时间注意机制,以了解不同历史外观特征在与当前特征相同的位置的贡献,从而解决代表动态运动特征的问题。最后,LSTM网络用于解码历史特征序列,以时间注意预测当前时刻的特征。与预测功能不同的那些实际功能被认为是异常特征。使用上采样对于异常特征定位原始帧上的异常行为。两个基准数据集上的实验证明了我们使用最先进的方法的方法的竞争性能。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号