首页> 外文期刊>Journal of supercomputing >MLEsIDSs: machine learning-based ensembles for intrusion detection systems-a review
【24h】

MLEsIDSs: machine learning-based ensembles for intrusion detection systems-a review

机译:MLESIDSS:用于入侵检测系统的基于机器学习的合奏 - 评论

获取原文
获取原文并翻译 | 示例

摘要

Network security plays an essential role in secure communication and avoids financial loss and crippled services due to network intrusions. Intruders generally exploit the flaws of popular software to mount a variety of attacks against network computer systems. The damage caused in the network attacks may vary from a little disruption in service to on developing financial loss. Recently, intrusion detection systems (IDSs) comprising machine learning techniques have emerged for handling unauthorized usage and access to network resources. With the passage of time, a wide variety of machine learning techniques have been designed and integrated with IDSs. Still, most of the IDSs reported poor intrusion detection results using false positive rate and detection rate. For solving these issues, researchers focused on the development of ensemble classifiers involving the integration of predictions by multiple individual classifiers. The ensemble classifiers enable to compensate for the weakness of individual classifiers and use their combined knowledge to enhance its performance. This study presents motivation and comprehensive review of intrusion detection systems based on ensembles in machine learning as an extension of our previous work in the field. Particularly, different ensemble methods in the field are analysed, taking into consideration different types of ensembles, and various approaches for integrating the predictions of individual classifiers for an ensemble classifier. The representative studies are compared in chronological order for systematic and critical analysis, understanding the current challenges and status of research in the field. Finally, the study presents essential future research directions for the development of effective IDSs.
机译:网络安全在安全沟通中起重要作用,避免由于网络入侵而避免经济损失和残废的服务。入侵者通常利用流行的软件的缺陷来装载各种攻击网络计算机系统。在网络攻击中造成的损害可能因在发展财务损失方面的一点中断而异。最近,已经出现了包括机器学习技术的入侵检测系统(IDS)用于处理未经授权的使用和访问网络资源。随着时间的推移,设计并与IDSS集成了各种机器学习技术。尽管如此,大多数IDS都报告了使用假阳性率和检测率的侵扰检测结果差。为了解决这些问题,研究人员专注于开发涉及多个单独分类器的预测整合的集合分类器的开发。集合分类器使能够补偿各个分类器的弱点,并使用它们的组合知识来提高其性能。本研究提出了基于机器学习中的集成的入侵检测系统的动机和全面审查,作为我们之前的现场工作的延伸。特别地,分析了该领域中的不同集合方法,考虑了不同类型的集合,以及用于集成集合分类器的各个分类器的预测的各种方法。以时间顺序进行系统和批判分析的计时性研究,了解现场研究的当前挑战和地位。最后,该研究提出了对有效IDS的发展的必要研究方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号