首页> 外文期刊>Journal of supercomputing >Swarm-based clustering algorithm for efficient web blog and data classification
【24h】

Swarm-based clustering algorithm for efficient web blog and data classification

机译:基于群体的高效网络博客和数据分类的聚类算法

获取原文
获取原文并翻译 | 示例

摘要

Data classification and the weblog classification have become the most regular approach for people to express themselves. Data classification is another type of problem for classifying a feature set into several feature subsets, and those are further clustered into different classes on the basis of binary or multiclassification. Many problems in science and technology, industry and commercial business and medicine and health care can be treated as classification problems. In recent years, many methods are existing to build a classification model based on many statistical concepts and optimization methods. One major issue of building statistical model will have the principle to provide good accuracy simply when the principal assumptions are correct. The classification decision made on accuracy only justifies the performance of the particular model. Before applying the model to the particular application, it requires good perceptive of data utilized. In order to provide an effective learning algorithm to refine such complexity in handling the data and to minimize output errors and to provide the hands to improve the efficiency of the model, this research article is framed. In this work, a novel algorithm named 'swarm-based cluster algorithm' is proposed to complete the feature selection task in order to produce optimized featurebased clusters for effective data and weblogs classification.
机译:数据分类和Weblog分类已成为人们表达自己的最正常方法。数据分类是将特征分类为多个特征子集的特征分类的另一种类型的问题,并且基于二进制或多分类,这些功能进一步聚集到不同的类别中。科学技术,工业和商业企业和医学和医疗保健的许多问题都可以视为分类问题。近年来,存在许多方法基于许多统计概念和优化方法构建分类模型。建筑统计模型的一个主要问题将在主要假设是正确的时,这项原则将具有良好的准确性。对准确性的分类决策仅证明了特定模型的性能。在将模型应用于特定应用程序之前,它需要利用的数据良好感知。为了提供有效的学习算法来改进处理数据的这种复杂性,并最大限度地减少输出误差,并提供手以提高模型的效率,这篇文章是框架。在这项工作中,提出了一种名为“群体的群集算法”的新颖算法来完成特征选择任务,以便为有效的数据和博客分类生成优化的FeatureBased集群。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号