首页> 外文期刊>Journal of supercomputing >An adaption scheduling based on dynamic weighted random forests for load demand forecasting
【24h】

An adaption scheduling based on dynamic weighted random forests for load demand forecasting

机译:基于动态加权随机森林的负荷自适应预测调度

获取原文
获取原文并翻译 | 示例

摘要

With the development of cloud computing, energy consumption has become a major and costly problem in data centers. To improve the energy efficiency of data centers, we analyze the influence factors of energy consumption and discover that reducing the idle servers can effectively cut down the energy consumption of data centers. Then the load demand forecasting algorithm using weighted random forests is proposed. And time factor matching coefficient obtained by considering the day type and the time span is employed to calculate the weights. To enhance the forecasting performance, an error correction strategy is also introduced into the forecasting model. The experimental results show that these strategies further improve the prediction accuracy, and the root-mean-square error is 2.6-4.1% lower than other forecasting algorithms. We finally design an adaptive scheduling technology that utilizes short-term prediction of load demand. This technology adaptively adjusts the scale of the data center cluster based on the forecast results. The simulation results indicate that the technology can reduce 12.5% energy consumption while ensuring the service quality.
机译:随着云计算的发展,能源消耗已成为数据中心的主要且昂贵的问题。为了提高数据中心的能效,我们分析了能耗的影响因素,发现减少闲置服务器可以有效降低数据中心的能耗。提出了一种利用加权随机森林的负荷需求预测算法。通过考虑日期类型和时间跨度获得的时间因子匹配系数用于计算权重。为了提高预测性能,在预测模型中还引入了纠错策略。实验结果表明,这些策略进一步提高了预测精度,均方根误差比其他预测算法低2.6-4.1%。我们最终设计了一种自适应调度技术,该技术利用负载需求的短期预测。该技术根据预测结果自适应地调整数据中心集群的规模。仿真结果表明,该技术可以在保证服务质量的同时降低能耗12.5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号