首页> 外文期刊>Journal of supercomputing >Implementation of scalable bidomain-based 3D cardiac simulations on a graphics processing unit cluster
【24h】

Implementation of scalable bidomain-based 3D cardiac simulations on a graphics processing unit cluster

机译:在图形处理单元群集上实现可伸缩的基于双域的3D心脏仿真

获取原文
获取原文并翻译 | 示例

摘要

Computational models of the human cardiac cells provide detailed properties of human ventricular cells. The execution time for a realistic 3D heart simulation based on these models is a major barrier for physicians to study and understand the heart diseases, and evaluate hypotheses rapidly toward developing treatments. Graphics processing unit (GPU)-based parallelization efforts to this date have been shown to be more effective than parallelization efforts on the CPU-based clusters in terms of addressing the 3D cardiac simulation time challenge. In this paper, we review all GPU-based studies and investigate both the cardiac cell models and cardiac tissue models in 3D space. We propose algorithmic optimizations based on red black successive over-relaxation method for reducing the number of simulation iterations and convergence method for dependence elimination between neighboring cells of the heart tissue. We investigate data transfer reduction and 2D mesh partitioning strategies, evaluate their impact on thread utilization, and propose a strongly scalable cardiac simulation. Our implementation results with reducing the execution time by a factor of five compared to the state-of-the-art baseline implementation. More importantly, our implementation is an important step toward achieving real-time cardiac simulations as it achieves the strongest scalability among all other cluster-based implementations.
机译:人心脏细胞的计算模型提供了人心室细胞的详细特性。基于这些模型进行逼真的3D心脏仿真的执行时间是医师学习和理解心脏病以及快速评估假设以开发治疗方法的主要障碍。迄今为止,在解决3D心脏仿真时间挑战方面,基于图形处理单元(GPU)的并行化工作已比基于CPU的群集上的并行化工作更加有效。在本文中,我们回顾了所有基于GPU的研究,并研究了3D空间中的心脏细胞模型和心脏组织模型。我们提出了基于红黑色连续过度松弛方法的算法优化,以减少仿真迭代的次数,并提出了一种用于消除心脏组织相邻细胞之间依赖性的收敛方法。我们研究数据传输减少和2D网格划分策略,评估它们对线程利用率的影响,并提出可扩展性强的心脏仿真。与最新的基准实施相比,我们的实施将执行时间减少了五倍。更重要的是,我们的实现是实现实时心脏仿真的重要一步,因为它实现了所有其他基于集群的实现中最强大的可伸缩性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号