首页> 外文期刊>Journal of supercomputing >An investigation of latency prediction for NoC-based communication architectures using machine learning techniques
【24h】

An investigation of latency prediction for NoC-based communication architectures using machine learning techniques

机译:使用机器学习技术的基于NoC的通信体系结构的延迟预测研究

获取原文
获取原文并翻译 | 示例

摘要

Due to the increasing number of cores in Systems on Chip (SoCs), bus architectures have suffered with limitations regarding performance. As applications demand higher bandwidth and lower latencies, buses have not been able to comply with such requirements due to longer wires and increased capacitance. Facing this scenario, Networks on Chip (NoCs) emerged as a way to overcome the limitations found in bus-based systems. Fully exploring all possible NoC characteristics settings is unfeasible due to the vast design space to cover. Therefore, some methods which aim to speed up the design process are needed. In this work, we propose the use of machine learning techniques to optimise NoC architecture components during the design phase. We have investigated the performance of several different ML techniques and selected the Random Forest one targeting audio/video applications. The results have shown an accuracy of up to 90% and 85% for prediction involving arbitration and routing protocols, respectively, and in terms of applications inference, audio/video achieved up to 99%. After this step, we have evaluated other classifiers for each application individually, aiming at finding the adequate one for each situation. The best class of classifiers found was the Tree-based one (Random Forest, Random Tree, and M5P) which is very encouraging, and it points to different approaches from the current state of the art for NoCs latency prediction.
机译:由于片上系统(SoC)中内核数量的增加,总线体系结构在性能方面受到了限制。随着应用要求更高的带宽和更低的延迟,由于更长的导线和更大的电容,总线无法满足这些要求。面对这种情况,片上网络(NoC)应运而生,以克服基于总线的系统中的局限性。由于要覆盖的设计空间很大,因此无法全面探索所有可能的NoC特性设置。因此,需要一些旨在加快设计过程的方法。在这项工作中,我们建议在设计阶段使用机器学习技术来优化NoC架构组件。我们研究了几种不同的机器学习技术的性能,并选择了一种针对音频/视频应用的随机森林。结果表明,涉及仲裁和路由协议的预测的准确度分别高达90%和85%,就应用程序推断而言,音频/视频的准确率高达99%。在此步骤之后,我们分别评估了每种应用程序的其他分类器,旨在为每种情况找到合适的分类器。发现的最佳分类器是基于树的分类器(随机森林,随机树和M5P),这是非常令人鼓舞的,它指出了与当前技术水平有关的NoC潜伏期预测的不同方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号