首页> 外文期刊>Journal of supercomputing >Experiences with implementing parallel discrete-event simulation on GPU
【24h】

Experiences with implementing parallel discrete-event simulation on GPU

机译:在GPU上实现并行离散事件仿真的经验

获取原文
获取原文并翻译 | 示例

摘要

Modern graphics processing units (GPUs) offer much more computational power than recent CPUs by providing a vast number of simple, data-parallel, multithreaded cores. In this study, we focus on the use of a GPU to perform parallel discrete-event simulation. Our approach is to use a modified service time distribution function to allow more independent events to be processed in parallel. The implementation issues and alternative strategies will be discussed in detail. We describe and compare our experience and results in using Thrust and CUB, two open-source parallel algorithms libraries which resemble the C++ Standard Template Library, to build our tool. The experimental results show that our implementation can be two orders of magnitude faster than the sequential simulation for large-scale simulation models.
机译:通过提供大量的简单,数据并行,多线程内核,现代图形处理单元(GPU)提供的计算能力比最近的CPU高得多。在这项研究中,我们集中于使用GPU执行并行离散事件模拟。我们的方法是使用修改的服务时间分配功能,以允许并行处理更多独立事件。实施问题和替代策略将详细讨论。我们描述和比较使用Thrust和CUB(这两个类似于C ++标准模板库的开源并行算法库)构建工具的经验和结果。实验结果表明,与大规模仿真模型的顺序仿真相比,我们的实现可以快两个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号