首页> 外文期刊>Journal of supercomputing >Prediction models for performance, power, and energy efficiency of software executed on heterogeneous hardware
【24h】

Prediction models for performance, power, and energy efficiency of software executed on heterogeneous hardware

机译:在异构硬件上执行的软件的性能,功耗和能效的预测模型

获取原文
获取原文并翻译 | 示例

摘要

Heterogeneous computer environments are becoming commonplace so it is increasingly important to understand how and where we could execute a given algorithm the most efficiently. In this paper we propose a methodology that uses both static source code metrics, and dynamic execution time, power, and energy measurements to build gain ratio prediction models. These models are trained on special benchmarks that have both sequential and parallel implementations and can be executed on various computing elements, e.g., on CPUs, GPUs, or FPGAs. After they are built, however, they can be applied to a new system using only the system's static source code metrics which are much more easily computable than any dynamic measurement. We found that while estimating a continuous gain ratio is a much harder problem, we could predict the gain category (e.g., "slight improvement" or "large deterioration") of porting to a specific configuration significantly more accurately than a random choice, using static information alone. We also conclude based on our benchmarks that parallelized implementations are less maintainable, thereby supporting the need for automatic transformations.
机译:异构计算机环境正变得司空见惯,因此,了解如何最有效地执行给定算法的方式和地点变得越来越重要。在本文中,我们提出了一种使用静态源代码指标以及动态执行时间,功率和能量测量值来构建增益比预测模型的方法。这些模型在具有连续和并行实现方式的特殊基准上进行了培训,并且可以在各种计算元素(例如,CPU,GPU或FPGA)上执行。但是,在构建它们之后,可以仅使用系统的静态源代码指标将它们应用于新系统,该指标比任何动态度量都更容易计算。我们发现,虽然估计连续增益比是一个困难得多的问题,但我们可以使用静态方法预测比随机选择更准确地移植到特定配置的增益类别(例如,“轻微改善”或“大幅恶化”)仅信息。我们还根据基准得出结论,并行化实现的维护性较差,从而支持了自动转换的需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号